On the Use of Preferential Weights in Interactive Reference Point Based Methods

We introduce a new way of utilizing preference information specified by the decision maker in interactive reference point based methods. A reference point consists of aspiration levels for each objective function. We take the desires of the decision maker into account more closely when projecting the reference point to become nondominated. In this way we can support the decision maker in finding the most satisfactory solutions faster. In practice, we adjust the weights in the achievement scalarizing function that projects the reference point. We demonstrate our idea with an example and we summarize results of computational tests that support the efficiency of the idea proposed.

[1]  John Buchanan,et al.  A naïve approach for solving MCDM problems: the GUESS method , 1997 .

[2]  Kaisa Miettinen,et al.  Synchronous approach in interactive multiobjective optimization , 2006, Eur. J. Oper. Res..

[3]  A. Wierzbicki A Mathematical Basis for Satisficing Decision Making , 1982 .

[4]  Kaisa Miettinen,et al.  On scalarizing functions in multiobjective optimization , 2002, OR Spectr..

[5]  Hirotaka Nakayama,et al.  Satisficing Trade-off Method for Multiobjective Programming , 1984 .

[6]  Kaisa Miettinen,et al.  Experiments with classification-based scalarizing functions in interactive multiobjective optimization , 2006, Eur. J. Oper. Res..

[7]  Kaisa Miettinen,et al.  Comparative evaluation of some interactive reference point-based methods for multi-objective optimisation , 1999, J. Oper. Res. Soc..

[8]  K. Miettinen,et al.  Incorporating preference information in interactive reference point methods for multiobjective optimization , 2009 .

[9]  Pekka Korhonen,et al.  A Visual Interactive Method for Solving the Multiple-Criteria Problem , 1986 .

[10]  K. Miettinen,et al.  Interactive bundle-based method for nondifferentiable multiobjeective optimization: nimbus § , 1995 .

[11]  R. Benayoun,et al.  Linear programming with multiple objective functions: Step method (stem) , 1971, Math. Program..

[12]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[13]  Andrzej Jaszkiewicz,et al.  The 'Light Beam Search' approach - an overview of methodology and applications , 1999, Eur. J. Oper. Res..

[14]  Manfred Grauer,et al.  Interactive Decision Analysis , 1984 .

[15]  Kaisa Miettinen,et al.  Integration of Two Multiobjective Optimization Methods for Nonlinear Problems , 2003, Optim. Methods Softw..

[16]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .