Computing similarity of coarse and irregular trajectories using space-time prisms

Increasing volumes of trajectory data require analysis methods which go beyond the visual. Methods for computing trajectory analysis typically assume linear interpolation between quasi-regular sampling points. This assumption, however, is often not realistic, and can lead to a meaningless analysis for sparsely and/or irregularly sampled data. We propose to use the space-time prism model instead, allowing to represent the influence of speed on possible trajectories within a volume. We give definitions for the similarity of trajectories in this model and describe algorithms for its computation using the Fréchet and the equal time distance.

[1]  Joachim Gudmundsson,et al.  Computational Movement Analysis , 2012, Springer Handbook of Geographic Information.

[2]  Bart Kuijpers,et al.  Analyzing Trajectories Using Uncertainty and Background Information , 2009, SSTD.

[3]  Harvey J. Miller,et al.  Modelling accessibility using space-time prism concepts within geographical information systems , 1991, Int. J. Geogr. Inf. Sci..

[4]  Ross Purves,et al.  How fast is a cow? Cross‐Scale Analysis of Movement Data , 2011, Trans. GIS.

[5]  Robert Weibel,et al.  Movement similarity assessment using symbolic representation of trajectories , 2012, Int. J. Geogr. Inf. Sci..

[6]  Jun Luo,et al.  Finding long and similar parts of trajectories , 2009, Comput. Geom..

[7]  Kai-Florian Richter,et al.  Semantic trajectory compression: Representing urban movement in a nutshell , 2012, J. Spatial Inf. Sci..

[8]  H. Miller Activities in Space and Time , 2004 .

[9]  Rafael Grimson,et al.  An analytic solution to the alibi query in the space–time prisms model for moving object data , 2011, Int. J. Geogr. Inf. Sci..

[10]  Bart Kuijpers,et al.  Modeling uncertainty of moving objects on road networks via space–time prisms , 2009, Int. J. Geogr. Inf. Sci..

[11]  David M. Mark,et al.  Measuring similarity between geospatial lifelines in studies of environmental health , 2005, J. Geogr. Syst..

[12]  Kevin Buchin,et al.  Detecting movement patterns using Brownian bridges , 2012, SIGSPATIAL/GIS.

[13]  Stephen M. Krone,et al.  Analyzing animal movements using Brownian bridges. , 2007, Ecology.

[14]  Helmut Alt,et al.  Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..

[15]  Joachim Gudmundsson,et al.  Constrained free space diagrams: a tool for trajectory analysis , 2010, Int. J. Geogr. Inf. Sci..