Operational semantics for formal tensorial calculus
暂无分享,去创建一个
[1] Umesh V. Vazirani,et al. Quantum Complexity Theory , 1997, SIAM J. Comput..
[2] Philip Maymin. Extending the Lambda Calculus to Express Randomized and Quantumized Algorithms , 1996 .
[3] CurienPierre-Louis,et al. Confluence properties of weak and strong calculi of explicit substitutions , 1996 .
[4] V. Roychowdhury,et al. On Universal and Fault-Tolerant Quantum Computing , 1999, quant-ph/9906054.
[5] Andr'e van Tonder,et al. Quantum Computation, Categorical Semantics and Linear Logic , 2003, ArXiv.
[6] Man-Duen Choi. Completely positive linear maps on complex matrices , 1975 .
[7] W. Wootters,et al. A single quantum cannot be cloned , 1982, Nature.
[8] Pierre Lescanne. From Lambda-sigma to Lambda-upsilon a Journey Through Calculi of Explicit Substitutions. , 1994 .
[9] Martín Abadi,et al. Explicit substitutions , 1989, POPL '90.
[10] A. Kitaev. Quantum computations: algorithms and error correction , 1997 .
[11] Peter Selinger,et al. Towards a quantum programming language , 2004, Mathematical Structures in Computer Science.
[12] Terry Rudolph,et al. A 2 rebit gate universal for quantum computing , 2002 .
[13] Charles H. Bennett,et al. Logical reversibility of computation , 1973 .
[14] D. Deutsch,et al. Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[15] P. Arrighi,et al. On quantum operations as quantum states , 2003, quant-ph/0307024.
[16] André van Tonder,et al. A Lambda Calculus for Quantum Computation , 2003, SIAM J. Comput..
[17] Jean-Pierre Jouannaud,et al. Rewrite Systems , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[18] A. Jamiołkowski. Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .
[19] Patrick Lincoln,et al. Linear logic , 1992, SIGA.
[20] Hans Zantema,et al. Rewrite Systems for Integer Arithmetic , 1995, RTA.
[21] Jean-Jacques Lévy,et al. Confluence properties of weak and strong calculi of explicit substitutions , 1996, JACM.
[22] Leonard M. Adleman,et al. Quantum Computability , 1997, SIAM J. Comput..
[23] F. Verstraete,et al. On quantum channels , 2002, quant-ph/0202124.
[24] Andrew Chi-Chih Yao,et al. Quantum Circuit Complexity , 1993, FOCS.
[25] J. Kowski. Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .
[26] D. Aharonov. Quantum Computation , 1998, quant-ph/9812037.
[27] Phil Watson,et al. An Efficient Representation of Arithmetic for Term Rewriting , 1991, RTA.