Operational semantics for formal tensorial calculus

With a view towards models of quantum computation, we define a functional language where all functions are linear operators by construction. A small step operational semantic (and hence an interpreter/simulator) is provided for this language in the form of a term rewrite systems. The linear-algebraic -calculus hereby constructed is linear in a different (yet related) sense to that, say, of the linear -calculus. These various notions of linearity are discussed in the context of quantum programming languages .

[1]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[2]  Philip Maymin Extending the Lambda Calculus to Express Randomized and Quantumized Algorithms , 1996 .

[3]  CurienPierre-Louis,et al.  Confluence properties of weak and strong calculi of explicit substitutions , 1996 .

[4]  V. Roychowdhury,et al.  On Universal and Fault-Tolerant Quantum Computing , 1999, quant-ph/9906054.

[5]  Andr'e van Tonder,et al.  Quantum Computation, Categorical Semantics and Linear Logic , 2003, ArXiv.

[6]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[7]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[8]  Pierre Lescanne From Lambda-sigma to Lambda-upsilon a Journey Through Calculi of Explicit Substitutions. , 1994 .

[9]  Martín Abadi,et al.  Explicit substitutions , 1989, POPL '90.

[10]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[11]  Peter Selinger,et al.  Towards a quantum programming language , 2004, Mathematical Structures in Computer Science.

[12]  Terry Rudolph,et al.  A 2 rebit gate universal for quantum computing , 2002 .

[13]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[14]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[15]  P. Arrighi,et al.  On quantum operations as quantum states , 2003, quant-ph/0307024.

[16]  André van Tonder,et al.  A Lambda Calculus for Quantum Computation , 2003, SIAM J. Comput..

[17]  Jean-Pierre Jouannaud,et al.  Rewrite Systems , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[18]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[19]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[20]  Hans Zantema,et al.  Rewrite Systems for Integer Arithmetic , 1995, RTA.

[21]  Jean-Jacques Lévy,et al.  Confluence properties of weak and strong calculi of explicit substitutions , 1996, JACM.

[22]  Leonard M. Adleman,et al.  Quantum Computability , 1997, SIAM J. Comput..

[23]  F. Verstraete,et al.  On quantum channels , 2002, quant-ph/0202124.

[24]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[25]  J. Kowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[26]  D. Aharonov Quantum Computation , 1998, quant-ph/9812037.

[27]  Phil Watson,et al.  An Efficient Representation of Arithmetic for Term Rewriting , 1991, RTA.