Generalized least squares inference in panel and multilevel models with serial correlation and fixed effects

In this paper, I consider generalized least squares (GLS) estimation in fixed effects panel and multilevel models with autocorrelation. The presence of fixed effects complicates implementation of GLS as estimating the fixed effects will typically render standard estimators of the covariance parameters necessary for obtaining feasible GLS estimates inconsistent. I focus on the case where the disturbances follow an AR(p) process and offer a simple to implement bias-correction for the AR coefficients. The usefulness of GLS and the derived bias-correction for the parameters of the autoregressive process is illustrated through a simulation study which uses data from the Current Population Survey.

[1]  P. Billingsley,et al.  Probability and Measure , 1980 .

[2]  Patrick M. Fitzpatrick Advanced Calculus: A Course in Mathematical Analysis , 1995 .

[3]  Nicholas M. Kiefer,et al.  Estimation of fixed effect models for time series of cross-sections with arbitrary intertemporal covariance , 1980 .

[4]  Jan F. Kiviet,et al.  On bias, inconsistency and efficiency of various estimators in dynamic panel data models , 1995 .

[5]  Takeshi Amemiya,et al.  A Note on a Random Coefficients Model , 1978 .

[6]  E. Duflo,et al.  How Much Should We Trust Differences-in-Differences Estimates? , 2001 .

[7]  Thomas MaCurdy,et al.  The use of time series processes to model the error structure of earnings in a longitudinal data analysis , 1982 .

[8]  C. Hansen Inference in linear panel data models with serial correlation and an essay on the impact of 401 (k) participation on the wealth distribution , 2004 .

[9]  R. Bell,et al.  Bias Reduction in Standard Errors for Linear and Generalized Linear Models with Multi-Stage Samples , 2002 .

[10]  Brent R. Moulton Random group effects and the precision of regression estimates , 1986 .

[11]  P. Doukhan Mixing: Properties and Examples , 1994 .

[12]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[13]  Alok Bhargava,et al.  Serial Correlation and the Fixed Effects Model , 1982 .

[14]  P. Phillips,et al.  Linear Regression Limit Theory for Nonstationary Panel Data , 1999 .

[15]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[16]  Jeffrey M. Wooldridge,et al.  Cluster-Sample Methods in Applied Econometrics , 2003 .

[17]  M. Arellano,et al.  Computing Robust Standard Errors for Within-Groups Estimators , 2009 .

[18]  Jinyong Hahn,et al.  Asymptotically Unbiased Inference for a Dynamic Panel Model with Fixed Effects When Both N and T are Large , 2000 .

[19]  H. White Asymptotic theory for econometricians , 1985 .

[20]  M. Nerlove,et al.  Biases in dynamic models with fixed effects , 1988 .

[21]  Jinyong Hahn,et al.  JACKKNIFE AND ANALYTICAL BIAS REDUCTION FOR NONLINEAR PANEL MODELS , 2003 .

[22]  W. Dickens,et al.  Error Components in Grouped Data: Why It&Apos;S Never Worth Weighting , 1985 .

[23]  M. Arellano,et al.  The Time Series and Cross-Section Asymptotics of Dynamic Panel Data Estimators , 2003 .

[24]  Daniel F. McCaffrey,et al.  Bias reduction in standard errors for linear regression with multi-stage samples , 2002 .

[25]  Thomas J. Rothenberg,et al.  APPROXIMATE NORMALITY OF GENERALIZED LEAST SQUARES ESTIMATES , 1984 .

[26]  Jerry A. Hausman,et al.  Difference in Difference Meets Generalized Least Squares: Higher Order Properties of Hypotheses Tests , 2008 .

[27]  Whitney K. Newey,et al.  Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators , 2003 .

[28]  G. Kézdi Robust Standard Error Estimation in Fixed-Effects Panel Models , 2003 .

[29]  Gary Solon,et al.  Estimating Autocorrelations in Fixed-Effects Models , 1984 .

[30]  Tony Lancaster,et al.  Orthogonal Parameters and Panel Data , 2002 .

[31]  Stephen G. Donald,et al.  Inference with Difference-in-Differences and Other Panel Data , 2007, The Review of Economics and Statistics.

[32]  Wolfgang Wefelmeyer,et al.  A third-order optimum property of the maximum likelihood estimator , 1978 .