Multiscroll chaotic system with sigmoid nonlinearity and its fractional order form with synchronization application

Abstract In this paper, a multiscroll snap oscillator with hyperbolic tangent function is proposed. There is no limitation in the number of scrolls and it can be increased by proper choice of a specific function. The Lyapunov exponents of the proposed system are obtained to testify the chaotic behavior of the system. Fractional order multiscroll system is derived from its integer order model by using the Adams–Bashforth–Moulton algorithm. A new scheme is applied in order to investigate the synchronization of the multiscroll systems. The main objective of the paper is to propose a multiscroll attractor and show that the number of scrolls can be controlled by the only nonlinear function. Such systems are less investigated in the literatures and has many real time applications like image and voice encryption, random number generators, chaos based communication systems and so on.

[1]  Karthikeyan Rajagopal,et al.  Fractional Order Memristor No Equilibrium Chaotic System with Its Adaptive Sliding Mode Synchronization and Genetically Optimized Fractional Order PID Synchronization , 2017, Complex..

[2]  Huagan Wu,et al.  Coexisting infinitely many attractors in active band-pass filter-based memristive circuit , 2016 .

[3]  Karthikeyan Rajagopal,et al.  Hyperchaotic Chameleon: Fractional Order FPGA Implementation , 2017, Complex..

[4]  Christos Volos,et al.  Dynamics and circuit of a chaotic system with a curve of equilibrium points , 2017 .

[5]  Binoy Krishna Roy,et al.  New family of 4-D hyperchaotic and chaotic systems with quadric surfaces of equilibria , 2018 .

[6]  Guangyi Wang,et al.  Initial condition-dependent dynamics and transient period in memristor-based hypogenetic jerk system with four line equilibria , 2018, Commun. Nonlinear Sci. Numer. Simul..

[7]  José-Cruz Nuñez Pérez,et al.  FPGA realization of multi-scroll chaotic oscillators , 2015, Commun. Nonlinear Sci. Numer. Simul..

[8]  Julien Clinton Sprott,et al.  Simplest dissipative chaotic flow , 1997 .

[9]  Guanrong Chen,et al.  A chaotic system with only one stable equilibrium , 2011, 1101.4067.

[10]  Christos Volos,et al.  Coexistence of hidden chaotic attractors in a novel no-equilibrium system , 2017 .

[11]  Julien Clinton Sprott,et al.  Megastability: Coexistence of a countable infinity of nested attractors in a periodically-forced oscillator with spatially-periodic damping , 2017 .

[12]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[13]  Sajad Jafari,et al.  Fractional Order Synchronous Reluctance Motor: Analysis, Chaos Control and FPGA Implementation , 2018 .

[14]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[15]  Bocheng Bao,et al.  Crisis‐induced coexisting multiple attractors in a second‐order nonautonomous memristive diode bridge‐based circuit , 2018, Int. J. Circuit Theory Appl..

[16]  Julien Clinton Sprott,et al.  Multistability in symmetric chaotic systems , 2015 .

[17]  Julien Clinton Sprott,et al.  Constructing Chaotic Systems with Total Amplitude Control , 2015, Int. J. Bifurc. Chaos.

[18]  Karthikeyan Rajagopal,et al.  Hyperchaotic Memcapacitor Oscillator with Infinite Equilibria and Coexisting Attractors , 2018, Circuits Syst. Signal Process..

[19]  Julien Clinton Sprott,et al.  Some simple chaotic jerk functions , 1997 .

[20]  Daizhan Cheng,et al.  A New Chaotic System and Beyond: the Generalized Lorenz-like System , 2004, Int. J. Bifurc. Chaos.

[21]  Bocheng Bao,et al.  Extreme multistability in a memristive circuit , 2016 .

[22]  Huagan Wu,et al.  Bi-Stability in an Improved Memristor-Based Third-Order Wien-Bridge Oscillator , 2019 .

[23]  Viet-Thanh Pham,et al.  A Novel Cubic-Equilibrium Chaotic System with Coexisting Hidden Attractors: Analysis, and Circuit Implementation , 2018, J. Circuits Syst. Comput..

[24]  Viet-Thanh Pham,et al.  Generating a Chaotic System with One Stable Equilibrium , 2017, Int. J. Bifurc. Chaos.

[25]  Karthikeyan Rajagopal,et al.  FPGA implementation of novel fractional-order chaotic systems with two equilibriums and no equilibrium and its adaptive sliding mode synchronization , 2017 .

[26]  Julien Clinton Sprott,et al.  An infinite 3-D quasiperiodic lattice of chaotic attractors , 2018 .

[27]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[28]  Luigi Fortuna,et al.  Reactive navigation through multiscroll systems: from theory to real-time implementation , 2008, Auton. Robots.

[29]  Carlos Sánchez-López,et al.  Integrated circuit generating 3- and 5-scroll attractors , 2012 .

[30]  Sajad Jafari,et al.  Three-dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form , 2014 .

[31]  Akif Akgul,et al.  A new chaotic oscillator with free control. , 2017, Chaos.

[32]  Guanrong Chen,et al.  Design and Implementation of Multi-Wing Butterfly Chaotic attractors via Lorenz-Type Systems , 2010, Int. J. Bifurc. Chaos.

[33]  Qiang Lai,et al.  A New Chaotic System with Multiple Attractors: Dynamic Analysis, Circuit Realization and S-Box Design , 2017, Entropy.

[34]  Viet-Thanh Pham,et al.  A New Chaotic Flow with Hidden Attractor: The First Hyperjerk System with No Equilibrium , 2018 .

[35]  M. Haeri,et al.  Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems , 2007 .

[36]  Huagan Wu,et al.  Controlling extreme multistability of memristor emulator-based dynamical circuit in flux–charge domain , 2018 .

[37]  Xiao-lei Yu,et al.  Autonomous navigation for unmanned aerial vehicles based on chaotic bionics theory , 2009 .

[38]  Viet-Thanh Pham,et al.  Bistable Hidden Attractors in a Novel Chaotic System with Hyperbolic Sine Equilibrium , 2018, Circuits Syst. Signal Process..

[39]  Viet-Thanh Pham,et al.  Multiscroll Chaotic Sea Obtained from a Simple 3D System Without Equilibrium , 2016, Int. J. Bifurc. Chaos.

[40]  Marius-F. Danca,et al.  Lyapunov exponents of a class of piecewise continuous systems of fractional order , 2014, 1408.5676.

[41]  Christos Volos,et al.  A New Chaotic System With Stable Equilibrium: From Theoretical Model to Circuit Implementation , 2017, IEEE Access.

[42]  Guanrong Chen,et al.  A general multiscroll Lorenz system family and its realization via digital signal processors. , 2006, Chaos.

[43]  Zhouchao Wei,et al.  On the periodic orbit bifurcating from one single non-hyperbolic equilibrium in a chaotic jerk system , 2015 .

[44]  Zhouchao Wei,et al.  Dynamical behaviors of a chaotic system with no equilibria , 2011 .

[45]  Christos Volos,et al.  A chaotic system with rounded square equilibrium and with no-equilibrium , 2017 .

[46]  Julien Clinton Sprott,et al.  Infinite Multistability in a Self-Reproducing Chaotic System , 2017, Int. J. Bifurc. Chaos.

[47]  Julien Clinton Sprott,et al.  Simple Chaotic Flows with a Curve of Equilibria , 2016, Int. J. Bifurc. Chaos.

[48]  Bocheng Bao,et al.  Two-memristor-based Chua’s hyperchaotic circuit with plane equilibrium and its extreme multistability , 2017 .

[49]  Huagan Wu,et al.  Coexistence of multiple bifurcation modes in memristive diode-bridge-based canonical Chua’s circuit , 2018 .

[50]  Viet-Thanh Pham,et al.  A new nonlinear oscillator with infinite number of coexisting hidden and self-excited attractors , 2018 .

[51]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .

[52]  Sergej Celikovský,et al.  Hyperchaotic encryption based on multi-scroll piecewise linear systems , 2015, Appl. Math. Comput..

[53]  Julien Clinton Sprott,et al.  A Simple Chaotic Flow with a Plane of Equilibria , 2016, Int. J. Bifurc. Chaos.

[54]  Jesus M. Munoz-Pacheco,et al.  Frequency limitations in generating multi-scroll chaotic attractors using CFOAs , 2014 .

[55]  Bocheng Bao,et al.  Hidden extreme multistability in memristive hyperchaotic system , 2017 .

[56]  Julien Clinton Sprott,et al.  Simple chaotic 3D flows with surfaces of equilibria , 2016 .

[57]  Julien Clinton Sprott,et al.  An infinite 2-D lattice of strange attractors , 2017 .