On the regularizing properties of a full multigrid method for ill-posed problems

For the stable solution of a linear ill-posed operator equation x = y we project the equation onto finite-dimensional spaces and apply a full multigrid method (MGM) with the smoother proposed by King. After giving level-independent contraction factor estimates for the corresponding symmetric multigrid operators, we study the regularizing properties of the corresponding full MGM with an a priori chosen finest level, proving convergence, with optimal rates under respective sourcewise representation conditions. We show applicability of the method to a parameter identification problem from inverse groundwater filtration, and give numerical results.

[1]  C. Bardos,et al.  Perturbations singulières et prolongements maximaux d'opérateurs positifs , 1973 .

[2]  Frank Natterer,et al.  Regularisierung schlecht gestellter Probleme durch Projektionsverfahren , 1977 .

[3]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[4]  W. Hackbusch,et al.  A New Convergence Proof for the Multigrid Method Including the V-Cycle , 1983 .

[5]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[6]  J. King On the construction of preconditioners by subspace decomposition , 1990 .

[7]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[8]  Jinchao Xu,et al.  Convergence estimates for multigrid algorithms without regularity assumptions , 1991 .

[9]  J. King,et al.  Multilevel algorithms for ill-posed problems , 1992 .

[10]  Joseph E. Pasciak,et al.  New estimates for multilevel algorithms including the V-cycle , 1993 .

[11]  J. Pasciak,et al.  The analysis of multigrid algorithms for pseudodifferential operators of order minus one , 1994 .

[12]  M. Hanke,et al.  A convergence analysis of the Landweber iteration for nonlinear ill-posed problems , 1995 .

[13]  Andreas Rieder,et al.  A wavelet multilevel method for ill-posed problems stabilized by Tikhonov regularization , 1997 .

[14]  M. Hanke A regularizing Levenberg - Marquardt scheme, with applications to inverse groundwater filtration problems , 1997 .

[15]  Martin Hanke,et al.  Two-level preconditioners for regularized inverse problems I: Theory , 1999, Numerische Mathematik.

[16]  Barbara Kaltenbacher,et al.  Regularization by projection with a posteriori discretization level choice for linear and nonlinear ill-posed problems , 2000 .

[17]  Barbara Kaltenbacher,et al.  A multi-grid method with a priori and a posteriori level choice for the regularization of nonlinear ill-posed problems , 2002, Numerische Mathematik.

[18]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.