Phase Transition for the Speed of the Biased Random Walk on the Supercritical Percolation Cluster

We prove the sharpness of the phase transition for the speed in biased random walk on the supercritical percolation cluster on ℤd. That is, for each d ≥ 2, and for any supercritical parameter p > pc, we prove the existence of a critical strength for the bias such that below this value the speed is positive, and above the value it is zero. We identify the value of the critical bias explicitly, and in the subballistic regime, we find the polynomial order of the distance moved by the particle. Each of these conclusions is obtained by investigating the geometry of the traps that are most effective at delaying the walk. A key element in proving our results is to understand that, on large scales, the particle trajectory is essentially one-dimensional; we prove such a dynamic renormalization statement in a much stronger form than was previously known. © 2013 Wiley Periodicals, Inc.

[1]  W. König,et al.  The Universality Classes in the Parabolic Anderson Model , 2005, math/0504102.

[2]  Deepak Dhar,et al.  Directed diffusion in a percolation network , 1983 .

[3]  Charles M. Newman,et al.  Tree graph inequalities and critical behavior in percolation models , 1984 .

[4]  G. B. Arous,et al.  Universality and extremal aging for dynamics of spin glasses on sub-exponential time scales , 2010, 1010.5190.

[5]  R. Schonmann,et al.  Domination by product measures , 1997 .

[6]  M. Barlow Random walks on supercritical percolation clusters , 2003, math/0302004.

[7]  Peter Mörters The parabolic Anderson model with heavy-tailed potential , 2009 .

[8]  G. B. Arous,et al.  A proof of the Lyons-Pemantle-Peres monotonicity conjecture for high biases , 2011, 1111.5865.

[9]  L. Saloff-Coste,et al.  Lectures on finite Markov chains , 1997 .

[10]  A. Sznitman Brownian motion, obstacles, and random media , 1998 .

[11]  Françoise Thauvin A la recherche... , 2009 .

[12]  N. Enriquez,et al.  Aging and quenched localization for one-dimensional random walks in random environment in the sub-ballistic regime , 2007, 0711.1095.

[13]  G. B. Arous,et al.  Universality of the REM for Dynamics of Mean-Field Spin Glasses , 2007, 0706.2135.

[14]  G. Ben Arous,et al.  Randomly biased walks on subcritical trees , 2011, 1101.4041.

[15]  S. Havlin,et al.  Diffusion in disordered media , 1991 .

[16]  Wendelin Werner,et al.  CRITICAL EXPONENTS FOR TWO-DIMENSIONAL PERCOLATION , 2001 .

[17]  H. Kesten Aspects of first passage percolation , 1986 .

[18]  Random walks with strongly inhomogeneous rates and singular diffusions: convergence, localization and aging in one dimension , 2000, math/0009098.

[19]  Andrey L. Piatnitski,et al.  Quenched invariance principles for random walks on percolation clusters , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  A. Klein,et al.  A characterization of the Anderson metal-insulator transport transition , 2004 .

[21]  Russell Lyons,et al.  Biased random walks on Galton–Watson trees , 1996 .

[22]  A. Klein,et al.  Random Schrödinger Operators: Localization and Delocalization, and All That , 2009 .

[23]  T. K. Carne,et al.  A transmutation formula for Markov chains , 1985 .

[24]  Andrey L. Piatnitski,et al.  Einstein relation for reversible diffusions in a random environment , 2010, 1005.5665.

[25]  N. Biggs RANDOM WALKS AND ELECTRICAL NETWORKS (Carus Mathematical Monographs 22) , 1987 .

[26]  Noam Berger,et al.  The speed of biased random walk on percolation clusters , 2002, math/0211303.

[27]  V. Gayrard,et al.  Communications in Mathematical Physics Glauber Dynamics of the Random Energy Model I . Metastable Motion on the Extreme States ∗ , 2022 .

[28]  L. Pastur,et al.  Introduction to the Theory of Disordered Systems , 1988 .

[29]  Fluctuation theory of connectivities for subcritical random cluster models , 2006, math/0610100.

[30]  G. Zaslavsky Chaos, fractional kinetics, and anomalous transport , 2002 .

[31]  R. Durrett Oriented Percolation in Two Dimensions , 1984 .

[32]  J. Bouchaud Weak ergodicity breaking and aging in disordered systems , 1992 .

[33]  M. Biskup,et al.  Quenched invariance principle for simple random walk on percolation clusters , 2005, math/0503576.

[34]  Joel L. Lebowitz,et al.  The Einstein relation for the displacement of a test particle in a random environment , 1994 .

[35]  A. Sznitman Course 4 - Random Motions in Random Media , 2006 .

[36]  G. B. Arous,et al.  Communications in Mathematical Physics Glauber Dynamics of the Random Energy Model II . Aging Below the Critical Temperature ∗ , 2003 .

[37]  Harry Kesten,et al.  A limit law for random walk in a random environment , 1975 .

[38]  Alain-Sol Sznitman,et al.  On the Anisotropic Walk on the Supercritical Percolation Cluster , 2003 .

[39]  Scaling limit for trap models on ℤd , 2006, math/0606719.

[40]  Alan Hammond,et al.  Biased random walks on a Galton-Watson tree with leaves , 2007, 0711.3686.

[41]  H. Kesten Percolation theory for mathematicians , 1982 .

[42]  The arcsine law as a universal aging scheme for trap models , 2006, math/0603340.

[43]  R. Pemantle,et al.  UNSOLVED PROBLEMS CONCERNING RANDOM WALKS ON TREES , 1997 .

[44]  Adam Timar,et al.  Bondary-connectivity via graph theory , 2007, 0711.1713.

[45]  Eric Babson,et al.  Cut sets and normed cohomology with applications to percolation , 1999 .

[46]  G. B. Arous,et al.  SCALING LIMIT FOR TRAP MODELS ON Z d , 2007 .

[47]  D. Dhar Diffusion and drift on percolation networks in an external field , 1984 .

[48]  Charles M. Newman,et al.  Percolation in half-spaces: equality of critical densities and continuity of the percolation probability , 1991 .

[49]  M. Manhart,et al.  Markov Processes , 2018, Introduction to Stochastic Processes and Simulation.

[50]  Elie Aidékon Speed of the biased random walk on a Galton--Watson tree , 2011, 1111.4313.

[51]  Alain-Sol Sznitman,et al.  A law of large numbers for random walks in random environment , 1999 .

[52]  Peter Morters,et al.  Ageing in the parabolic Anderson model , 2009, 0910.5613.

[53]  C. Morawetz The Courant Institute of Mathematical Sciences , 1988 .