Non-linear rheology of tension structural element under single and variable loading history Part I: Theoretical derivations

The present paper concerns the macroscopic overall description of rheologic properties for steel wire and synthetic fibre cables under variable loading actions according to non-linear creep and/or relaxation theory. The general constitutive equations of non-linear creep and/or relaxation of tension elements - cables under one-step and the variable stress or strain inputs using the product and two types of additive approximations of the kernel functions are presented in the paper. The derived non-linear constitutive equations describe a non-linear rheologic behaviour of the cables for a variable stress or strain history using the kernel functions determined only by one-step - constant creep or relaxation tests. The developed constitutive equations enable to simulate and to predict in a general way non-linear rheologic behaviour of the cables under an arbitrary loading or straining history. The derived constitutive equations can be used for the various tension structural elements with the non-linear rheologic properties under uniaxial variable stressing or straining.

[1]  S. Hartmann Computation in finite-strain viscoelasticity: finite elements based on the interpretation as differential–algebraic equations , 2002 .

[2]  Ronald S. Rivlin,et al.  The mechanics of non-linear materials with memory , 1959 .

[3]  R. Quintanilla Comparison arguments and decay estimates in non-linear viscoelasticity , 2004 .

[4]  Michel R. Labrosse,et al.  A finite element model for simple straight wire rope strands , 2000 .

[5]  R. J. Loy,et al.  Rheological implications of completely monotone fading memory , 2002 .

[6]  A. Pipkin,et al.  Small Finite Deformations of Viscoelastic Solids , 1964 .

[7]  L. Nasdala,et al.  On damage modelling for elastic and viscoelastic materials at large strain , 2001 .

[8]  S. W. Park,et al.  Methods of interconversion between linear viscoelastic material functions. Part I-a numerical method based on Prony series , 1999 .

[9]  W. Findley,et al.  Product Form of Kernel Functions for Nonlinear Viscoelasticity of PVC Under Constant Rate Stressing , 1968 .

[10]  A. Drozdov A model for the nonlinear viscoelastic response in polymers at finite strains , 1998 .

[11]  G. Weng,et al.  A new constitutive equation for the long-term creep of polymers based on physical aging , 2002 .

[12]  Viscoelastic response of a simple strand , 1993 .

[13]  R. S. Rivlin,et al.  The mechanics of non-linear materials with memory , 1957 .

[14]  Mohammed Raoof,et al.  PREDICTION OF COUPLED AXIAL/TORSIONAL STIFFNESS COEFFICIENTS OF LOCKED-COIL ROPES , 1998 .

[15]  Bernhard A. Schrefler,et al.  Artificial neural network for parameter identifications for an elasto-plastic model of superconducting cable under cyclic loading , 2002 .

[16]  Ghyslaine McClure,et al.  Application of ADINA to stress analysis of an optical ground wire , 1999 .

[17]  J. L. Spoormaker,et al.  Solution strategies for FEM analysis with nonlinear viscoelastic polymers , 2002 .

[18]  C. J. Burgoyne,et al.  Creep behaviour of a parallel-lay aramid rope , 1992 .

[19]  Geoffrey J. Frank,et al.  A viscoelastic–viscoplastic constitutive model for glassy polymers , 2001 .

[20]  Yang Hai-tian,et al.  A combined approach of EFGM and precise algorithm in time domain solving viscoelasticity problems , 2003 .

[21]  M. F. Ahmad,et al.  A finite element constitutive update scheme for anisotropic, viscoelastic solids exhibiting non-linearity of the Schapery type , 1999 .

[22]  C. R. Chaplin,et al.  Wire strain variations in normal and overloaded ropes in tension-tension fatigue and their effect on endurance , 2001 .

[23]  Dan Givoli,et al.  Time-stepping schemes for systems of Volterra integro-differential equations , 2001 .

[24]  C. M. Leech,et al.  The modelling of friction in polymer fibre ropes , 2002 .

[25]  Adnane Boukamel,et al.  Analysis of a thermo-viscoelastic model in large strain , 2000 .

[26]  K. Cho,et al.  Time-strain nonseparability in viscoelastic constitutive equations , 2001 .

[27]  S. Youn,et al.  A nonlinear viscoelastic constitutive model of solidpropellant , 1999 .

[28]  W. N. Findley,et al.  Combined Stress‐Creep Experiments on a Nonlinear Viscoelastic Material to Determine the Kernel Functions for a Multiple Integral Representation of Creep , 1965 .

[29]  Wg Jiang,et al.  A concise finite element model for three-layered straight wire rope strand , 2000 .

[30]  Howard L. Schreyer,et al.  On time integration of viscoplastic constitutive models suitable for creep , 2002 .

[31]  S. W. Park,et al.  Methods of interconversion between linear viscoelastic material functions. Part II—an approximate analytical method , 1999 .

[32]  Alan R.S. Ponter,et al.  Minimum theorems and the Linear Matching method for bodies in a cyclic state of creep , 2002 .

[33]  M. Fafard,et al.  Three-Dimensional Viscoelastic Model with Nonconstant Coefficients , 2001 .

[34]  Ted A. Conway,et al.  Frictional Dissipation in Axially Loaded Simple Straight Strands , 2000 .

[35]  Alan S. Wineman,et al.  A nonlinear viscoelastic model for one dimensional response of elastomeric bushings , 1998 .

[36]  H. B. Coda,et al.  New methodology for the treatment of two dimensional viscoelastic coupling problems , 2003 .

[37]  Toshio Aida,et al.  On the Creep and the Relaxation of Spiral Ropes , 1975 .

[38]  O. Nakada Theory of Non-linear Responses , 1960 .

[39]  W. G. Gottenberg,et al.  An Experimental Study of a Nonlinear Viscoelastic Solid in Uniaxial Tension , 1969 .

[40]  Xiaolun Huang,et al.  Extension of a cable in the presence of dry friction , 1996 .

[41]  Richard Schapery,et al.  Nonlinear viscoelastic solids , 2000 .

[42]  S. Reese,et al.  A theory of finite viscoelasticity and numerical aspects , 1998 .

[43]  Javier Bonet,et al.  Large strain viscoelastic constitutive models , 2001 .