DeC and ADER: Similarities, Differences and an Unified Framework

In this paper, we demonstrate that the ADER approach as it is used inter alia in [1] can be seen as a special interpretation of the deferred correction (DeC) method as introduced in [2]. By using this fact, we are able to embed ADER in a theoretical background of time integration schemes and prove the relation between the accuracy order and the number of iterations which are needed to reach the desired order. Finally, we can also investigate the stability regions for the ADER approach for different orders using several basis functions and compare them with the DeC ansatz. [1] O. Zanotti, F. Fambri, M. Dumbser, and A. Hidalgo. Space--time adaptive ader discontinuous galerkin finite element schemes with a posteriori sub-cell finite volume limiting. Computers & Fluids, 118:204--224, 2015. [2] A. Dutt, L. Greengard, and V. Rokhlin. Spectral Deferred Correction Methods for Ordinary Differential Equations. BIT Numerical Mathematics, 40(2):241--266, 2000.

[1]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[2]  Michael Dumbser,et al.  A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..

[3]  Steven J. Ruuth,et al.  Two Barriers on Strong-Stability-Preserving Time Discretization Methods , 2002, J. Sci. Comput..

[4]  David I. Ketcheson,et al.  Relaxation Runge-Kutta Methods: Conservation and Stability for Inner-Product Norms , 2019, SIAM J. Numer. Anal..

[5]  Nicolas Bacaër,et al.  A Short History of Mathematical Population Dynamics , 2010 .

[6]  Philipp Öffner,et al.  Application of modal filtering to a spectral difference method , 2016, Math. Comput..

[7]  Eleuterio F. Toro,et al.  Analysis of ADER and ADER-WAF schemes , 2006 .

[8]  L. Greengard,et al.  Spectral Deferred Correction Methods for Ordinary Differential Equations , 2000 .

[9]  Michael Dumbser,et al.  Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes - Speed comparisons with Runge-Kutta methods , 2013, J. Comput. Phys..

[10]  Marcel Vinokur,et al.  Discontinuous Spectral Difference Method for Conservation Laws on Unstructured Grids , 2004 .

[11]  Lisandro Dalcin,et al.  Relaxation Runge-Kutta Methods: Fully-Discrete Explicit Entropy-Stable Schemes for the Euler and Navier-Stokes Equations , 2019, 1905.09129.

[12]  Philipp Offner,et al.  Arbitrary high-order, conservative and positivity preserving Patankar-type deferred correction schemes , 2019, Applied Numerical Mathematics.

[13]  Qing Nie,et al.  DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia , 2017, Journal of Open Research Software.

[14]  Rémi Abgrall,et al.  Residual distribution schemes: Current status and future trends , 2006 .

[15]  M. Minion Semi-implicit spectral deferred correction methods for ordinary differential equations , 2003 .

[16]  Haran Jackson,et al.  On the eigenvalues of the ADER-WENO Galerkin predictor , 2016, J. Comput. Phys..

[17]  Rémi Abgrall,et al.  High-order residual distribution scheme for the time-dependent Euler equations of fluid dynamics , 2018, Comput. Math. Appl..

[18]  Mengping Zhang,et al.  STRONG STABILITY PRESERVING PROPERTY OF THE DEFERRED CORRECTION TIME DISCRETIZATION , 2008 .

[19]  Andrew J. Christlieb,et al.  Integral deferred correction methods constructed with high order Runge-Kutta integrators , 2009, Math. Comput..

[20]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[21]  Philipp Öffner,et al.  Error Boundedness of Discontinuous Galerkin Methods with Variable Coefficients , 2018, J. Sci. Comput..

[22]  Michael Dumbser,et al.  Space–time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting , 2014, 1412.0081.

[23]  Michael Dumbser,et al.  Efficient Implementation of ADER Discontinuous Galerkin Schemes for a Scalable Hyperbolic PDE Engine , 2018, Axioms.

[24]  J. Glaubitz,et al.  Stable discretisations of high-order discontinuous Galerkin methods on equidistant and scattered points , 2020, ArXiv.

[25]  Eleuterio F. Toro,et al.  ADER: Arbitrary High Order Godunov Approach , 2002, J. Sci. Comput..

[26]  Claus-Dieter Munz,et al.  ADER: A High-Order Approach for Linear Hyperbolic Systems in 2D , 2002, J. Sci. Comput..

[27]  E. Toro,et al.  Solution of the generalized Riemann problem for advection–reaction equations , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[28]  Jan Nordström,et al.  Summation-by-parts in time , 2013, J. Comput. Phys..

[29]  Jean-François Boussuge,et al.  Revisiting the spectral analysis for high-order spectral discontinuous methods , 2017, J. Comput. Phys..

[30]  Lisandro Dalcin,et al.  Relaxation Runge-Kutta Methods: Fully Discrete Explicit Entropy-Stable Schemes for the Compressible Euler and Navier-Stokes Equations , 2019, SIAM J. Sci. Comput..

[31]  Rémi Abgrall,et al.  High Order Asymptotic Preserving Deferred Correction Implicit-Explicit Schemes for Kinetic Models , 2020, SIAM J. Sci. Comput..

[32]  R. Abgrall,et al.  High Order Schemes for Hyperbolic Problems Using Globally Continuous Approximation and Avoiding Mass Matrices , 2017, J. Sci. Comput..

[33]  Eleuterio F. Toro,et al.  Towards Very High Order Godunov Schemes , 2001 .

[34]  V. A. Titarev,et al.  ADER Methods for Hyperbolic Equations with a Time-Reconstruction Solver for the Generalized Riemann Problem: the Scalar Case , 2019, Communications on Applied Mathematics and Computation.

[35]  Chi-Wang Shu,et al.  Positivity-Preserving Time Discretizations for Production–Destruction Equations with Applications to Non-equilibrium Flows , 2018, J. Sci. Comput..

[36]  Michael Dumbser,et al.  High Order ADER Schemes for Continuum Mechanics , 2020, Frontiers in Physics.

[37]  P. Lax,et al.  Systems of conservation laws , 1960 .

[38]  Marcel Vinokur,et al.  Spectral difference method for unstructured grids I: Basic formulation , 2006, J. Comput. Phys..