AMT 2.0: qualitative and quantitative trace analysis with extended signal temporal logic

We introduce in this paper AMT2.0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {AMT} \; 2.0$$\end{document}, a tool for qualitative and quantitative analysis of hybrid continuous and Boolean signals that combine numerical values and discrete events. The evaluation of the signals is based on rich temporal specifications expressed in extended signal temporal logic, which integrates timed regular expressions within signal temporal logic. The tool features qualitative monitoring (property satisfaction checking), trace diagnostics for explaining and justifying property violations and specification-driven measurement of quantitative features of the signal. We demonstrate the tool functionality on several running examples and case studies, and evaluate its performance.

[1]  Thomas A. Henzinger,et al.  The benefits of relaxing punctuality , 1991, PODC '91.

[2]  Paul Caspi,et al.  A Kleene theorem for timed automata , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[3]  Dejan Nickovic,et al.  Parametric Identification of Temporal Properties , 2011, RV.

[4]  Garvit Juniwal,et al.  Robust online monitoring of signal temporal logic , 2015, Formal Methods in System Design.

[5]  François Fages,et al.  BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge , 2006, Bioinform..

[6]  Dejan Nickovic,et al.  AMT: A Property-Based Monitoring Tool for Analog Systems , 2007, FORMATS.

[7]  Dejan Nickovic,et al.  Monitoring properties of analog and mixed-signal circuits , 2012, International Journal on Software Tools for Technology Transfer.

[8]  Dejan Nickovic,et al.  Specification-Based Monitoring of Cyber-Physical Systems: A Survey on Theory, Tools and Applications , 2018, Lectures on Runtime Verification.

[9]  Dejan Nickovic,et al.  Monitoring Temporal Properties of Continuous Signals , 2004, FORMATS/FTRTFT.

[10]  Paul Caspi,et al.  Timed regular expressions , 2002, JACM.

[11]  Dejan Nickovic,et al.  Localizing Faults in Simulink/Stateflow Models with STL , 2018, HSCC.

[12]  Dejan Nickovic,et al.  AMT 2.0: qualitative and quantitative trace analysis with extended signal temporal logic , 2018, International Journal on Software Tools for Technology Transfer.

[13]  O Henriksen,et al.  T1, T2, and concentrations of brain metabolites in neonates and adolescents estimated with H‐1 MR spectroscopy , 1994, Journal of magnetic resonance imaging : JMRI.

[14]  David A. Basin,et al.  Almost Event-Rate Independent Monitoring of Metric Dynamic Logic , 2017, RV.

[15]  Oded Maler,et al.  Robust Satisfaction of Temporal Logic over Real-Valued Signals , 2010, FORMATS.

[16]  Dejan Nickovic,et al.  Measuring with Timed Patterns , 2015, CAV.

[17]  Sriram Sankaranarayanan,et al.  S-TaLiRo: A Tool for Temporal Logic Falsification for Hybrid Systems , 2011, TACAS.

[18]  Dogan Ulus Montre: A Tool for Monitoring Timed Regular Expressions , 2017, CAV.

[19]  Dejan Nickovic,et al.  Trace Diagnostics Using Temporal Implicants , 2015, ATVA.

[20]  Dejan Nickovic,et al.  Assertion-based monitoring in practice - Checking correctness of an automotive sensor interface , 2016, Sci. Comput. Program..

[21]  Ron Koymans,et al.  Specifying real-time properties with metric temporal logic , 1990, Real-Time Systems.

[22]  Pieter J. Mosterman,et al.  Requirements-Based Testing in Aircraft Control Design , 2005 .

[23]  Alexandre Donzé,et al.  Breach, A Toolbox for Verification and Parameter Synthesis of Hybrid Systems , 2010, CAV.

[24]  Dana Fisman,et al.  A Practical Introduction to PSL , 2006, Series on Integrated Circuits and Systems.

[25]  Dogan Ulus,et al.  Timed Pattern Matching , 2014, FORMATS.

[26]  Srikanth Vijayaraghavan,et al.  A practical guide for system Verilog assertions , 2005 .