General network design: A unified view of combined location and network design problems

This paper presents a unified framework for the general network design problem which encompasses several classical problems involving combined location and network design decisions. In some of these problems the service demand relates users and facilities, whereas in other cases the service demand relates pairs of users between them, and facilities are used to consolidate and re-route flows between users. Problems of this type arise in the design of transportation and telecommunication systems and include well-known problems such as location-network design problems, hub location problems, extensive facility location problems, tree-star location problems and cycle-star location problems, among others. Relevant modeling aspects, alternative formulations and possible algorithmic strategies are presented and analyzed.

[1]  Gilbert Laporte,et al.  The Dynamic Uncapacitated Hub Location Problem , 2011, Transp. Sci..

[2]  Iván A. Contreras,et al.  Lagrangean bounds for the optimum communication spanning tree problem , 2010 .

[3]  Alfredo Marín,et al.  Formulating and solving splittable capacitated multiple allocation hub location problems , 2005, Comput. Oper. Res..

[4]  Barrett W. Thomas,et al.  Network design for time‐constrained delivery , 2008 .

[5]  D. Preßmar,et al.  Operations research proceedings , 1990 .

[6]  Byung Ha Lim,et al.  A hub location problem in designing digital data service networks: Lagrangian relaxation approach , 1996 .

[7]  Andreas T. Ernst,et al.  The capacitated multiple allocation hub location problem: Formulations and algorithms , 2000, Eur. J. Oper. Res..

[8]  Jean-François Cordeau,et al.  An integrated model for logistics network design , 2006, Ann. Oper. Res..

[9]  Michel Gendreau,et al.  The Covering Tour Problem , 1997, Oper. Res..

[10]  Alysson M. Costa,et al.  Two-level network design with intermediate facilities: An application to electrical distribution systems , 2011 .

[11]  Richard L. Church,et al.  The maximal covering location problem , 1974 .

[12]  Mauro Dell'Amico,et al.  The Capacitated m-Ring-Star Problem , 2007, Oper. Res..

[13]  Iván A. Contreras,et al.  Branch and Price for Large-Scale Capacitated Hub Location Problems with Single Assignment , 2011, INFORMS J. Comput..

[14]  Andreas T. Ernst,et al.  Hub location problems , 2002 .

[15]  Thomas L. Magnanti,et al.  A Dual-Ascent Procedure for Large-Scale Uncapacitated Network Design , 1989, Oper. Res..

[16]  J. G. Klincewicz,et al.  HUB LOCATION IN BACKBONE/TRIBUTARY NETWORK DESIGN: A REVIEW , 1998 .

[17]  Mercedes Landete,et al.  New formulations for the uncapacitated multiple allocation hub location problem , 2006, Eur. J. Oper. Res..

[18]  Shahin Gelareh,et al.  Hub Location Models in Public Transport Planning , 2008 .

[19]  José-Manuel Belenguer,et al.  A Branch and Cut method for the Capacitated Location-Routing Problem , 2006, 2006 International Conference on Service Systems and Service Management.

[20]  Andreas T. Ernst,et al.  Preprocessing and cutting for multiple allocation hub location problems , 2004, Eur. J. Oper. Res..

[21]  Gilbert Laporte,et al.  Path, Tree and Cycle Location , 1998 .

[22]  Gilbert Laporte,et al.  Efficient heuristics for Median Cycle Problems , 2004, J. Oper. Res. Soc..

[23]  George L. Nemhauser,et al.  The uncapacitated facility location problem , 1990 .

[24]  Gerhard Reinelt,et al.  Locating Health Facilities in Nouna District, Burkina Faso , 2005, OR.

[25]  Sibel A. Alumur,et al.  Network hub location problems: The state of the art , 2008, Eur. J. Oper. Res..

[26]  Timothy J. Lowe,et al.  The generalized P-forest problem on a tree network , 1992, Networks.

[27]  Mark S. Daskin,et al.  AN INTEGRATED MODEL OF FACILITY LOCATION AND TRANSPORTATION NETWORK DESIGN , 2001 .

[28]  Michel Minoux,et al.  Networks synthesis and optimum network design problems: Models, solution methods and applications , 1989, Networks.

[29]  James F. Campbell,et al.  Integer programming formulations of discrete hub location problems , 1994 .

[30]  Chaitanya Swamy,et al.  Primal-Dual Algorithms for Connected Facility Location Problems , 2002, APPROX.

[31]  M. Balinski Fixed‐cost transportation problems , 1961 .

[32]  Gilbert Laporte,et al.  Stochastic uncapacitated hub location , 2011, Eur. J. Oper. Res..

[33]  Jiefeng Xu,et al.  Optimizing a Ring-Based Private Line Telecommunication Network Using Tabu Search , 1999 .

[34]  Timothy J. Lowe,et al.  On the location of a tree-shaped facility , 1996, Networks.

[35]  Martine Labbé,et al.  Polyhedral Analysis for Concentrator Location Problems , 2006, Comput. Optim. Appl..

[36]  Ivana Ljubic,et al.  MIP models for connected facility location: A theoretical and computational study☆ , 2011, Comput. Oper. Res..

[37]  Andreas T. Ernst,et al.  Hub Arc Location Problems: Part I - Introduction and Results , 2005, Manag. Sci..

[38]  Iván A. Contreras,et al.  Tight bounds from a path based formulation for the tree of hub location problem , 2009, Comput. Oper. Res..

[39]  L. Kantorovich On the Translocation of Masses , 2006 .

[40]  Chaitanya Swamy,et al.  Primal–Dual Algorithms for Connected Facility Location Problems , 2004, Algorithmica.

[41]  Gilbert Laporte,et al.  Fifty Years of Vehicle Routing , 2009, Transp. Sci..

[42]  Thomas L. Magnanti,et al.  Variable Disaggregation in Network Flow Problems with Piecewise Linear Costs , 2007, Oper. Res..

[43]  Hande Yaman,et al.  Star p-hub median problem with modular arc capacities , 2008, Comput. Oper. Res..

[44]  Harvey J. Miller,et al.  THE HUB NETWORK DESIGN PROBLEM: A REVIEW AND SYNTHESIS. , 1994 .

[45]  George B. Dantzig,et al.  The Truck Dispatching Problem , 1959 .

[46]  Inmaculada Rodríguez Martín,et al.  Locating a cycle in a transportation or a telecommunications network , 2007, Networks.

[47]  Cara Cocking Solutions to facility location-network design problems , 2008 .

[48]  Juan A. Mesa,et al.  A review of extensive facility location in networks , 1996 .

[49]  Ángel Marín An extension to rapid transit network design problem , 2007 .

[50]  Luís Gouveia,et al.  On the capacitated concentrator location problem: a reformulation by discretization , 2006, Comput. Oper. Res..

[51]  Inmaculada Rodríguez Martín,et al.  The Ring Star Problem: Polyhedral analysis and exact algorithm , 2004, Networks.

[52]  O. Kariv,et al.  An Algorithmic Approach to Network Location Problems. I: The p-Centers , 1979 .

[53]  Markus Chimani,et al.  2-InterConnected Facility Location: Specifications, Complexity Results, and Exact Solutions , 2009 .

[54]  M. Labbé,et al.  Solving the hub location problem in a star–star network , 2008 .

[55]  Andreas T. Ernst,et al.  An Exact Solution Approach Based on Shortest-Paths for p-Hub Median Problems , 1998, INFORMS J. Comput..

[56]  Iván A. Contreras,et al.  Lagrangean relaxation for the capacitated hub location problem with single assignment , 2009, OR Spectr..

[57]  Fred W. Glover,et al.  Strong formulations and cutting planes for designing digital data service networks , 1993, Telecommun. Syst..

[58]  Morton E. O'Kelly,et al.  The Location of Interacting Hub Facilities , 1986, Transp. Sci..

[59]  T. C. Hu Optimum Communication Spanning Trees , 1974, SIAM J. Comput..

[60]  J A Díaz,et al.  A Branch-and-Price algorithm for the Single Source Capacitated Plant Location Problem , 2002, J. Oper. Res. Soc..

[61]  Timothy J. Lowe,et al.  Upgrading arcs to minimize the maximum travel time in a network , 2006, Networks.

[62]  El-Ghazali Talbi,et al.  Metaheuristics and cooperative approaches for the Bi-objective Ring Star Problem , 2010, Comput. Oper. Res..

[63]  Gilbert Laporte,et al.  Benders Decomposition for Large-Scale Uncapacitated Hub Location , 2011, Oper. Res..

[64]  Kyung-Yong Chwa,et al.  Improved Primal-Dual Approximation Algorithm for the Connected Facility Location Problem , 2008, COCOA.

[65]  이용호,et al.  A Branch and Cut Algorithm for the Steiner Ring Star Problem , 1998 .

[66]  Charles S. ReVelle,et al.  The Location of Emergency Service Facilities , 1971, Oper. Res..

[67]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[68]  Mauro Dell'Amico,et al.  Annotated bibliographies in combinatorial optimization , edited by Mauro Dell' Amico, Francesco Maffioli and Silvano Martello. Pp. 495. £60. 1997. ISBN 0 471 9654 X (Wiley). , 1999 .

[69]  Dong-Wan Tcha,et al.  Optimal design of a two-level hierarchical network with tree-star configuration , 1992 .

[70]  Inmaculada Rodríguez Martín,et al.  Variable neighborhood tabu search and its application to the median cycle problem , 2003, Eur. J. Oper. Res..

[71]  D. Skorin-Kapov,et al.  Tight linear programming relaxations of uncapacitated p-hub median problems , 1996 .

[72]  Nimrod Megiddo,et al.  On the Complexity of Some Common Geometric Location Problems , 1984, SIAM J. Comput..

[73]  Siavash Vahdati Daneshmand,et al.  A comparison of Steiner tree relaxations , 2001, Discret. Appl. Math..

[74]  O. Kariv,et al.  An Algorithmic Approach to Network Location Problems. II: The p-Medians , 1979 .

[75]  Alfredo Marín,et al.  Uncapacitated Euclidean Hub Location: Strengthened Formulation, New Facets and a Relax-and-cut Algorithm , 2005, J. Glob. Optim..

[76]  Andreas T. Ernst,et al.  Efficient algorithms for the uncapac-itated single allocation p-hub median problem , 1996 .

[77]  Richard L. Church,et al.  Improving accessibility to rural health services: The maximal covering network improvement problem , 2009 .

[78]  Inmaculada Rodríguez Martín,et al.  Locating median cycles in networks , 2005, Eur. J. Oper. Res..

[79]  Alfred A. Kuehn,et al.  A Heuristic Program for Locating Warehouses , 1963 .

[80]  Sibel A. Alumur,et al.  The design of single allocation incomplete hub networks , 2009 .

[81]  Saïd Salhi,et al.  Location-routing: Issues, models and methods , 2007, Eur. J. Oper. Res..

[82]  Martine Labbé,et al.  A branch-and-cut algorithm for the partitioning-hub location-routing problem , 2011, Comput. Oper. Res..

[83]  Paul R. Harper,et al.  Locational analysis: highlights of growth to maturity , 2009, J. Oper. Res. Soc..

[84]  Pawel Winter,et al.  Steiner problem in networks: A survey , 1987, Networks.

[85]  Antonio Frangioni,et al.  0-1 Reformulations of the Multicommodity Capacitated Network Design Problem , 2009, Discret. Appl. Math..

[86]  Thomas L. Magnanti,et al.  Network Design and Transportation Planning: Models and Algorithms , 1984, Transp. Sci..

[87]  S. Raghavan,et al.  Dual-Based Local Search for the Connected Facility Location and Related Problems , 2010, INFORMS J. Comput..

[88]  Viet Hung Nguyen,et al.  On Tree Star Network design , 2007 .

[89]  Iván A. Contreras,et al.  The Tree of Hubs Location Problem , 2010, Eur. J. Oper. Res..

[90]  P. Slater Locating Central Paths in a Graph , 1982 .

[91]  Bang Ye Wu Approximation algorithms for the optimal p-source communication spanning tree , 2004, Discret. Appl. Math..

[92]  Gerhard Reinelt,et al.  Minimizing the maximum travel time in a combined model of facility location and network design , 2012 .

[93]  S. L. Hakimi,et al.  Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph , 1964 .

[94]  Horst W. Hamacher,et al.  Adapting polyhedral properties from facility to hub location problems , 2004, Discret. Appl. Math..

[95]  Gilbert Laporte,et al.  An iterated local search heuristic for the logistics network design problem with single assignment , 2008 .

[96]  Francisco Saldanha-da-Gama,et al.  The capacitated single-allocation hub location problem revisited: A note on a classical formulation , 2010, Eur. J. Oper. Res..

[97]  J. Current,et al.  The median tour and maximal covering tour problems: Formulations and heuristics , 1994 .

[98]  Mark S. Daskin,et al.  Capacitated facility location/network design problems , 2001, Eur. J. Oper. Res..

[99]  Justo Puerto,et al.  Locating tree-shaped facilities using the ordered median objective , 2005, Math. Program..

[100]  R. Ravi,et al.  Approximation Algorithms for Problems Combining Facility Location and Network Design , 2006, Oper. Res..

[101]  Hande Yaman,et al.  The hierarchical hub median problem with single assignment , 2009 .

[102]  Andreas T. Ernst,et al.  Hub Arc Location Problems: Part II - Formulations and Optimal Algorithms , 2005, Manag. Sci..

[103]  Zvi Drezner,et al.  NETWORK DESIGN: SELECTION AND DESIGN OF LINKS AND FACILITY LOCATION , 2003 .

[104]  Hui Chen,et al.  Minimax flow tree problems , 2009, Networks.

[105]  Martine Labbé,et al.  A branch and cut algorithm for hub location problems with single assignment , 2005, Math. Program..

[106]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[107]  Amit Kumar,et al.  Provisioning a virtual private network: a network design problem for multicommodity flow , 2001, STOC '01.

[108]  Morton E. O'Kelly,et al.  Hub facility location with fixed costs , 1992 .

[109]  Hande Yaman Concentrator location in telecommunications networks , 2004 .

[110]  David P. Williamson,et al.  A simpler and better derandomization of an approximation algorithm for single source rent-or-buy , 2007, Oper. Res. Lett..

[111]  Andreas T. Ernst,et al.  Solution algorithms for the capacitated single allocation hub location problem , 1999, Ann. Oper. Res..

[112]  Francisco Saldanha-da-Gama,et al.  Facility location and supply chain management - A review , 2009, Eur. J. Oper. Res..

[113]  Timothy J. Lowe,et al.  On the location of a tree-shaped facility , 1996, Networks.

[114]  Bahar Y. Kara,et al.  The latest arrival hub location problem for cargo delivery systems with stopovers , 2007 .

[115]  Andreas T. Ernst,et al.  Exact and heuristic algorithms for the uncapacitated multiple allocation p-hub median problem , 1998 .

[116]  David K. Smith Network Flows: Theory, Algorithms, and Applications , 1994 .

[117]  Martine Labbé,et al.  On locating path- or tree-shaped facilities on networks , 1993, Networks.

[118]  Friedrich Eisenbrand,et al.  Approximating connected facility location problems via random facility sampling and core detouring , 2008, SODA '08.