Invariant Domains Preserving Arbitrary Lagrangian Eulerian Approximation of Hyperbolic Systems with Continuous Finite Elements
暂无分享,去创建一个
Yong Yang | Jean-Luc Guermond | Bojan Popov | Laura Saavedra | J. Guermond | B. Popov | L. Saavedra | Yong Yang
[1] Michael Dumbser,et al. A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D , 2014, J. Comput. Phys..
[2] P. Lax. Hyperbolic systems of conservation laws , 2006 .
[3] A. J. Barlow,et al. A compatible finite element multi‐material ALE hydrodynamics algorithm , 2008 .
[4] Mikhail Shashkov,et al. Multi-Scale Lagrangian Shock Hydrodynamics on Q1/P0 Finite Elements: Theoretical Framework and Two-dimensional Computations. , 2008 .
[5] Mikhail Shashkov,et al. Formulations of Artificial Viscosity for Multi-dimensional Shock Wave Computations , 1998 .
[6] Inmaculada Higueras,et al. Representations of Runge-Kutta Methods and Strong Stability Preserving Methods , 2005, SIAM J. Numer. Anal..
[7] Jean-Luc Guermond,et al. Entropy–viscosity method for the single material Euler equations in Lagrangian frame , 2016 .
[8] A. Huerta,et al. Arbitrary Lagrangian–Eulerian Methods , 2004 .
[9] Tzanio V. Kolev,et al. A tensor artificial viscosity using a finite element approach , 2009, J. Comput. Phys..
[10] Lucia Gastaldi,et al. A priori error estimates for the Arbitrary Lagrangian Eulerian formulation with finite elements , 2001, J. Num. Math..
[11] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[12] C. M. Dafermos,et al. Hyberbolic [i.e. Hyperbolic] conservation laws in continuum physics , 2005 .
[13] Zhi Yang,et al. Unstructured Dynamic Meshes with Higher-order Time Integration Schemes for the Unsteady Navier-Stokes Equations , 2005 .
[14] H. Frid. Maps of Convex Sets and Invariant Regions¶for Finite-Difference Systems¶of Conservation Laws , 2001 .
[15] Tzanio V. Kolev,et al. High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics , 2012, SIAM J. Sci. Comput..
[16] Charbel Farhat,et al. Provably stable and time‐accurate extensions of Runge–Kutta schemes for CFD computations on moving grids , 2012 .
[17] Bojan Popov,et al. Fast estimation from above of the maximum wave speed in the Riemann problem for the Euler equations , 2015, J. Comput. Phys..
[18] M. N. Spijker,et al. An extension and analysis of the Shu-Osher representation of Runge-Kutta methods , 2004, Math. Comput..
[19] A. Bressan. Hyperbolic systems of conservation laws : the one-dimensional Cauchy problem , 2000 .
[20] Rémi Abgrall,et al. A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids , 2014, J. Comput. Phys..
[21] P. Lax. Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .
[22] W. F. Noh,et al. CEL: A TIME-DEPENDENT, TWO-SPACE-DIMENSIONAL, COUPLED EULERIAN-LAGRANGE CODE , 1963 .
[23] Charbel Farhat,et al. The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids , 2001 .
[24] Paul Glaister,et al. Generation of Arbitrary Lagrangian–Eulerian (ALE) velocities, based on monitor functions, for the solution of compressible fluid equations , 2005 .
[25] Mark Ainsworth,et al. Pyramid Algorithms for Bernstein-Bézier Finite Elements of High, Nonuniform Order in Any Dimension , 2014, SIAM J. Sci. Comput..
[26] P. Thomas,et al. Geometric Conservation Law and Its Application to Flow Computations on Moving Grids , 1979 .
[27] Mikhail Shashkov,et al. A tensor artificial viscosity using a mimetic finite difference algorithm , 2001 .
[28] D. Hoff. Invariant regions for systems of conservation laws , 1985 .
[29] Raphaël Loubère,et al. "Curl-q": A vorticity damping artificial viscosity for essentially irrotational Lagrangian hydrodynamics calculations , 2006, J. Comput. Phys..
[30] Bruno Després,et al. A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension , 2009, J. Comput. Phys..
[31] Bojan Popov,et al. Adaptive Semidiscrete Central-Upwind Schemes for Nonconvex Hyperbolic Conservation Laws , 2007, SIAM J. Sci. Comput..
[32] Raphaël Loubère,et al. ReALE: A reconnection-based arbitrary-Lagrangian-Eulerian method , 2010, J. Comput. Phys..
[33] Gui-Qiang G. Chen. Euler Equations and Related Hyperbolic Conservation Laws , 2005 .
[34] Bojan Popov,et al. Invariant Domains and First-Order Continuous Finite Element Approximation for Hyperbolic Systems , 2015, SIAM J. Numer. Anal..
[35] Charbel Farhat,et al. On the significance of the geometric conservation law for flow computations on moving meshes , 2000 .
[36] Konstantin Lipnikov,et al. A framework for developing a mimetic tensor artificial viscosity for Lagrangian hydrocodes on arbitrary polygonal meshes , 2010, J. Comput. Phys..
[37] Chi-Wang Shu,et al. High Order Strong Stability Preserving Time Discretizations , 2009, J. Sci. Comput..
[38] Larry L. Schumaker,et al. Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.
[39] Chi-Wang Shu,et al. Positivity-preserving Lagrangian scheme for multi-material compressible flow , 2014, J. Comput. Phys..