Reverse mathematics and order theoretic fixed point theorems
暂无分享,去创建一个
[1] Alberto Marcone,et al. Linear extensions of partial orders and reverse mathematics , 2012, Math. Log. Q..
[2] B. Schröder. Ordered Sets: An Introduction , 2012 .
[3] R. Soare. Recursively enumerable sets and degrees , 1987 .
[4] L. Kantorovitch. The method of successive approximation for functional equations , 1939 .
[5] A. Davis,et al. A characterization of complete lattices , 1955 .
[6] J. Łoś. Un théorème sur les superpositions des fonctions définies dans les ensembles arbitraires , 1950 .
[7] A. Tarski. A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .
[8] Ernst Witt. Beweisstudien zum Satz von M. Zorn. Herrn Erhard. Schmidt zum 75. Geburtstag gewidmet , 1950 .
[9] Ernst Witt. Beweisstudien zum Satz von M. Zorn , 1998 .
[10] K. Deimling. Fixed Point Theory , 2008 .
[11] G. Markowsky. Chain-complete posets and directed sets with applications , 1976 .
[12] B. Davey,et al. Introduction to Lattices and Order: Appendix B: further reading , 2002 .
[13] Smbat Abian,et al. A theorem on partially ordered sets, with applications to fixed point theorems , 1961 .
[14] Kazuyuki Tanaka,et al. Fixed Point Theory in Weak Second-Order Arithmetic , 1990, Ann. Pure Appl. Log..
[15] Stephen G. Simpson,et al. Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.
[16] Steven Roman,et al. Lattices and ordered sets , 2008 .
[17] Nicolas Bourbaki,et al. Sur le théorème de Zorn , 1949 .