Reverse mathematics and order theoretic fixed point theorems

The theory of countable partially ordered sets (posets) is developed within a weak subsystem of second order arithmetic. We within $$\mathsf {RCA_0}$$RCA0 give definitions of notions of the countable order theory and present some statements of countable lattices equivalent to arithmetical comprehension axiom over $$\mathsf {RCA_0}$$RCA0. Then we within $$\mathsf {RCA_0}$$RCA0 give proofs of Knaster–Tarski fixed point theorem, Tarski–Kantorovitch fixed point theorem, Bourbaki–Witt fixed point theorem, and Abian–Brown maximal fixed point theorem for countable lattices or posets. We also give Reverse Mathematics results of the fixed point theory of countable posets; Abian–Brown least fixed point theorem, Davis’ converse for countable lattices, Markowski’s converse for countable posets, and arithmetical comprehension axiom are pairwise equivalent over $$\mathsf {RCA_0}$$RCA0. Here the converses state that some fixed point properties characterize the completeness of the underlying spaces.

[1]  Alberto Marcone,et al.  Linear extensions of partial orders and reverse mathematics , 2012, Math. Log. Q..

[2]  B. Schröder Ordered Sets: An Introduction , 2012 .

[3]  R. Soare Recursively enumerable sets and degrees , 1987 .

[4]  L. Kantorovitch The method of successive approximation for functional equations , 1939 .

[5]  A. Davis,et al.  A characterization of complete lattices , 1955 .

[6]  J. Łoś Un théorème sur les superpositions des fonctions définies dans les ensembles arbitraires , 1950 .

[7]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .

[8]  Ernst Witt Beweisstudien zum Satz von M. Zorn. Herrn Erhard. Schmidt zum 75. Geburtstag gewidmet , 1950 .

[9]  Ernst Witt Beweisstudien zum Satz von M. Zorn , 1998 .

[10]  K. Deimling Fixed Point Theory , 2008 .

[11]  G. Markowsky Chain-complete posets and directed sets with applications , 1976 .

[12]  B. Davey,et al.  Introduction to Lattices and Order: Appendix B: further reading , 2002 .

[13]  Smbat Abian,et al.  A theorem on partially ordered sets, with applications to fixed point theorems , 1961 .

[14]  Kazuyuki Tanaka,et al.  Fixed Point Theory in Weak Second-Order Arithmetic , 1990, Ann. Pure Appl. Log..

[15]  Stephen G. Simpson,et al.  Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.

[16]  Steven Roman,et al.  Lattices and ordered sets , 2008 .

[17]  Nicolas Bourbaki,et al.  Sur le théorème de Zorn , 1949 .