Properness Defects of Projections and Computation of at Least One Point in Each Connected Component of a Real Algebraic Set

Abstract Computing at least one point in each connected component of a real algebraic set is a basic subroutine to decide emptiness of semi-algebraic sets, which is a fundamental algorithmic problem in effective real algebraic geometry. In this article we propose a new algorithm for the former task, which avoids a hypothesis of properness required in many of the previous methods. We show how studying the set of non-properness of a linear projection Π enables us to detect the connected components of a real algebraic set without critical points for Π. Our algorithm is based on this observation and its practical counterpoint, using the triangular representation of algebraic varieties. Our experiments show its efficiency on a family of examples.

[1]  Mohab Safey El Din,et al.  On the practical computation of one point in each connected component of a semi-algebraic set defined by a polynomial system of equations and non-strict inequalities , 2004 .

[2]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[3]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[4]  Marc Giusti,et al.  Generalized polar varieties: geometry and algorithms , 2005, J. Complex..

[5]  Dongming Wang,et al.  Elimination Methods , 2001, Texts and Monographs in Symbolic Computation.

[6]  Daniel Lazard,et al.  A new method for solving algebraic systems of positive dimension , 1991, Discret. Appl. Math..

[7]  J. E. Morais,et al.  Lower Bounds for diophantine Approximation , 1996 .

[8]  Dima Grigoriev,et al.  Solving Systems of Polynomial Inequalities in Subexponential Time , 1988, J. Symb. Comput..

[9]  Fabrice Rouillier,et al.  Design of regular nonseparable bidimensional wavelets using Grobner basis techniques , 1998, IEEE Trans. Signal Process..

[10]  Marc Moreno Maza,et al.  Calculs de pgcd au-dessus des tours d'extensions simples et resolution des systemes d'equations algebriques , 1997 .

[11]  Jean-Charles Faugère,et al.  Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..

[12]  George E. Collins,et al.  Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975, Automata Theory and Formal Languages.

[13]  B. Buchberger,et al.  Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[14]  T. A. Brown,et al.  Theory of Equations. , 1950, The Mathematical Gazette.

[15]  J. E. Morais,et al.  Straight--Line Programs in Geometric Elimination Theory , 1996, alg-geom/9609005.

[16]  Bernard Mourrain,et al.  Matrices in Elimination Theory , 1999, J. Symb. Comput..

[17]  Marc Giusti,et al.  Lower bounds for diophantine approximations , 1997 .

[18]  Jean Charles Faugère,et al.  A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.

[19]  Marc Giusti,et al.  A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..

[20]  Dongming Wang,et al.  An Elimination Method for Polynomial Systems , 1993, J. Symb. Comput..

[21]  Marie-Françoise Roy,et al.  On the combinatorial and algebraic complexity of Quanti erEliminationS , 1994 .

[22]  K. B. O’Keefe,et al.  The differential ideal $[uv]$ , 1966 .

[23]  N. Bose Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory , 1995 .

[24]  Joos Heintz,et al.  On the Complexity of Semialgebraic Sets , 1989, IFIP Congress.

[25]  P. Aubry,et al.  Ensembles triangulaires de polynomes et resolution de systemes algebriques. Implantation en axiom , 1999 .

[26]  S. Basu,et al.  A New Algorithm to Find a Point in Every Cell Defined by a Family of Polynomials , 1998 .

[27]  Marc Giusti,et al.  Polar Varieties, Real Equation Solving, and Data Structures: The Hypersurface Case , 1997, J. Complex..

[28]  I. Shafarevich,et al.  Basic algebraic geometry 1 (2nd, revised and expanded ed.) , 1994 .

[29]  J. E. Morais,et al.  When Polynomial Equation Systems Can Be "Solved" Fast? , 1995, AAECC.

[30]  B. Bank,et al.  Polar Varieties and Efficient Real Equation Solving: The Hypersurface Case , 1996 .

[31]  Marc Moreno Maza,et al.  On the Theories of Triangular Sets , 1999, J. Symb. Comput..

[32]  Marie-Françoise Roy,et al.  Zeros, multiplicities, and idempotents for zero-dimensional systems , 1996 .

[33]  Éric Schost,et al.  Polar varieties and computation of one point in each connected component of a smooth real algebraic set , 2003, ISSAC '03.

[34]  François Lemaire Contribution à l'algorithmique en algèbre différentielle , 2002 .

[35]  C. Wampler,et al.  Basic Algebraic Geometry , 2005 .

[36]  B. Bank,et al.  Polar varieties and efficient real elimination , 2000 .

[37]  Mohab Safey El Din Resolution reelle des systemes polynomiaux en dimension positive , 2001 .

[38]  Sally Morrison The Differential Ideal [ P ] : M ∞ , 1999 .

[39]  Zbigniew Jelonek,et al.  Testing sets for properness of polynomial mappings , 1999 .

[40]  S. Basu,et al.  Algorithms in semi-algebraic geometry , 1996 .

[41]  Marie-Françoise Roy Basic algorithms in real algebraic geometry and their complexity: from Sturm's theorem to the existential theory of reals , 1996 .

[42]  Fabrice Rouillier,et al.  Solving Zero-Dimensional Systems Through the Rational Univariate Representation , 1999, Applicable Algebra in Engineering, Communication and Computing.

[43]  Jan Verschelde,et al.  Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation , 1999, TOMS.

[44]  Fabrice Rouillier,et al.  Solving the Birkhoff Interpolation Problem via the Critical Point Method: An Experimental Study , 2000, Automated Deduction in Geometry.

[45]  Marc Moreno Maza,et al.  Polynomial Gcd Computations over Towers of Algebraic Extensions , 1995, AAECC.

[46]  Marc Giusti,et al.  A first approach to generalized polar varieties , 2003 .

[47]  Renaud Rioboo Towards faster real algebraic numbers , 2003, J. Symb. Comput..

[48]  Fabrice Rouillier,et al.  Real Solving for Positive Dimensional Systems , 2002, J. Symb. Comput..

[49]  Evelyne Hubert,et al.  Notes on Triangular Sets and Triangulation-Decomposition Algorithms I: Polynomial Systems , 2001, SNSC.

[50]  Fabrice Rouillier,et al.  Finding at Least One Point in Each Connected Component of a Real Algebraic Set Defined by a Single Equation , 2000, J. Complex..

[51]  W. Burnside,et al.  Theory of equations , 1886 .

[52]  P. Zimmermann,et al.  Efficient isolation of polynomial's real roots , 2004 .

[53]  Éric Schost,et al.  Computing Parametric Geometric Resolutions , 2003, Applicable Algebra in Engineering, Communication and Computing.

[54]  Joos Heintz,et al.  On the Theoretical and Practical Complexity of the Existential Theory of Reals , 1993, Comput. J..

[55]  Daniel Lazard,et al.  Solving Zero-Dimensional Algebraic Systems , 1992, J. Symb. Comput..