Efficient quantum memory and entanglement between light and an atomic ensemble using magnetic fields

We present two protocols, one for the storage of light in an atomic ensemble and the subsequent retrieval, and another one for the generation of entanglement between light and atoms. They rely on two passes of a single pulse through the ensemble, Larmor precessing in an external field. Both protocols work deterministically and the relevant figures of merit--such as the fidelity or the EPR variance--scale exponentially in the coupling strength. We solve the corresponding Maxwell-Bloch equations describing the scattering process and determine the resulting input-output relations which only involve one relevant light mode that, in turn, can be easily accessed experimentally.

[1]  J I Cirac,et al.  Quantum communication between atomic ensembles using coherent light. , 2000, Physical review letters.

[2]  E. S. Polzik,et al.  Single-passage readout of atomic quantum memory , 2006 .

[3]  Philippe Grangier,et al.  Dynamics of a pulsed continuous-variable quantum memory (6 pages) , 2005, quant-ph/0512175.

[4]  Light-matter quantum interface , 2003, quant-ph/0312156.

[5]  M. Lukin,et al.  Electromagnetically induced transparency with tunable single-photon pulses , 2005, Nature.

[6]  H. J. Kimble,et al.  Measurement-induced entanglement for excitation stored in remote atomic ensembles , 2005, Nature.

[7]  D. Bruß,et al.  Optimal Universal Quantum Cloning and State Estimation , 1997, quant-ph/9712019.

[8]  Massar,et al.  Optimal extraction of information from finite quantum ensembles. , 1995, Physical review letters.

[9]  J. Cirac,et al.  Experimental demonstration of quantum memory for light , 2004, Nature.

[10]  Popescu,et al.  Bell's inequalities versus teleportation: What is nonlocality? , 1994, Physical review letters.

[11]  J. Ignacio Cirac,et al.  Entanglement generation and Hamiltonian simulation in continuous-variable systems , 2003 .

[12]  J. Cirac,et al.  Entanglement of formation for symmetric Gaussian states. , 2003, Physical review letters.

[13]  D. Matsukevich,et al.  Storage and retrieval of single photons transmitted between remote quantum memories , 2005, Nature.

[14]  J I Cirac,et al.  Quantum benchmark for storage and transmission of coherent states. , 2005, Physical review letters.

[15]  V. Buzek,et al.  Universal Algorithm for Optimal Estimation of Quantum States from Finite Ensembles via Realizable Ge , 1997, quant-ph/9707028.

[16]  Samuel L. Braunstein,et al.  Criteria for continuous-variable quantum teleportation , 1999, quant-ph/9910030.

[17]  B. Julsgaard,et al.  Experimental long-lived entanglement of two macroscopic objects , 2001, Nature.

[18]  E Solano,et al.  Unconditional two-mode squeezing of separated atomic ensembles. , 2006, Physical review letters.

[19]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[20]  H. Primakoff,et al.  Field dependence of the intrinsic domain magnetization of a ferromagnet , 1940 .

[21]  K. Hammerer,et al.  Teleportation and spin squeezing utilizing multimode entanglement of light with atoms , 2005, quant-ph/0511174.