Molecular Systems Biology Peer Review Process File Oncogenic K-ras Decouples Glucose and Glutamine Metabolism to Support Cancer Cell Growth Transaction Report

Oncogenes such as K‐ras mediate cellular and metabolic transformation during tumorigenesis. To analyze K‐Ras‐dependent metabolic alterations, we employed 13C metabolic flux analysis (MFA), non‐targeted tracer fate detection (NTFD) of 15N‐labeled glutamine, and transcriptomic profiling in mouse fibroblast and human carcinoma cell lines. Stable isotope‐labeled glucose and glutamine tracers and computational determination of intracellular fluxes indicated that cells expressing oncogenic K‐Ras exhibited enhanced glycolytic activity, decreased oxidative flux through the tricarboxylic acid (TCA) cycle, and increased utilization of glutamine for anabolic synthesis. Surprisingly, a non‐canonical labeling of TCA cycle‐associated metabolites was detected in both transformed cell lines. Transcriptional profiling detected elevated expression of several genes associated with glycolysis, glutamine metabolism, and nucleotide biosynthesis upon transformation with oncogenic K‐Ras. Chemical perturbation of enzymes along these pathways further supports the decoupling of glycolysis and TCA metabolism, with glutamine supplying increased carbon to drive the TCA cycle. These results provide evidence for a role of oncogenic K‐Ras in the metabolic reprogramming of cancer cells.

[1]  F. Oesch,et al.  Carbohydrate metabolism in human renal clear cell carcinomas. , 1992, Laboratory investigation; a journal of technical methods and pathology.

[2]  W. Wheaton,et al.  Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity , 2010, Proceedings of the National Academy of Sciences.

[3]  K. Kinzler,et al.  Requirement for p53 and p21 to sustain G2 arrest after DNA damage. , 1998, Science.

[4]  Christian A. Rees,et al.  Systematic variation in gene expression patterns in human cancer cell lines , 2000, Nature Genetics.

[5]  Xiao-Jiang Feng,et al.  Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy , 2008, Nature Biotechnology.

[6]  Dietmar Schomburg,et al.  MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis. , 2009, Analytical chemistry.

[7]  H. Grimm,et al.  Metabolic characteristics of different malignant cancer cell lines. , 1998, Anticancer research.

[8]  M. Barbacid,et al.  ras gene Amplification and malignant transformation , 1985, Molecular and cellular biology.

[9]  J. Mackey,et al.  Metabolic Modulation of Glioblastoma with Dichloroacetate , 2010, Science Translational Medicine.

[10]  Lilia Alberghina,et al.  Glutamine Deprivation Induces Abortive S-Phase Rescued by Deoxyribonucleotides in K-Ras Transformed Fibroblasts , 2009, PloS one.

[11]  O. Witte,et al.  Visualizing cancer and immune cell function with metabolic positron emission tomography. , 2010, Current opinion in genetics & development.

[12]  L. Alberghina,et al.  Ras-dependent carbon metabolism and transformation in mouse fibroblasts , 2006, Oncogene.

[13]  G. Stephanopoulos,et al.  Network rigidity and metabolic engineering in metabolite overproduction , 1991, Science.

[14]  L. Alberghina,et al.  Mitochondrial Complex I decrease is responsible for bioenergetic dysfunction in K-ras transformed cells. , 2010, Biochimica et biophysica acta.

[15]  Jürg Bähler,et al.  Post-transcriptional control of gene expression: a genome-wide perspective. , 2005, Trends in biochemical sciences.

[16]  Pamela K. Kreeger,et al.  Cancer systems biology: a network modeling perspective , 2009, Carcinogenesis.

[17]  D. Botstein,et al.  A gene expression database for the molecular pharmacology of cancer , 2000, Nature Genetics.

[18]  Christian M. Metallo,et al.  Metabolism strikes back: metabolic flux regulates cell signaling. , 2010, Genes & development.

[19]  K. Kinzler,et al.  Glucose Deprivation Contributes to the Development of KRAS Pathway Mutations in Tumor Cells , 2009, Science.

[20]  Jamey D. Young,et al.  An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis , 2008, Biotechnology and bioengineering.

[21]  C. Thompson,et al.  Glutamine addiction: a new therapeutic target in cancer. , 2010, Trends in biochemical sciences.

[22]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[23]  C. Harris,et al.  The IARC TP53 database: New online mutation analysis and recommendations to users , 2002, Human mutation.

[24]  S. Schreiber,et al.  Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Rafael A Irizarry,et al.  Exploration, normalization, and summaries of high density oligonucleotide array probe level data. , 2003, Biostatistics.

[26]  J. Downward Targeting RAS signalling pathways in cancer therapy , 2003, Nature Reviews Cancer.

[27]  H. Brunengraber,et al.  Correction of 13C mass isotopomer distributions for natural stable isotope abundance. , 1996, Journal of mass spectrometry : JMS.

[28]  Nicola Zamboni,et al.  Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells , 2007, The Journal of cell biology.

[29]  L. Baggetto,et al.  Deviant energetic metabolism of glycolytic cancer cells. , 1992, Biochimie.

[30]  F. Chiaradonna,et al.  Acquired glucose sensitivity of k-ras transformed fibroblasts. , 2005, Biochemical Society transactions.

[31]  Oksana Gavrilova,et al.  p53 Regulates Mitochondrial Respiration , 2006, Science.

[32]  Gregory Stephanopoulos,et al.  Quantifying Reductive Carboxylation Flux of Glutamine to Lipid in a Brown Adipocyte Cell Line* , 2008, Journal of Biological Chemistry.

[33]  A. Alavi,et al.  Akt Stimulates Aerobic Glycolysis in Cancer Cells , 2004, Cancer Research.

[34]  D A Hilton,et al.  Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. , 1999, Cancer research.

[35]  H. Christofk,et al.  Identification of small molecule inhibitors of pyruvate kinase M 2 , 2010 .

[36]  Saroj P. Mathupala,et al.  Aberrant Glycolytic Metabolism of Cancer Cells: A Remarkable Coordination of Genetic, Transcriptional, Post-translational, and Mutational Events That Lead to a Critical Role for Type II Hexokinase , 1997, Journal of bioenergetics and biomembranes.

[37]  O. Warburg [Origin of cancer cells]. , 1956, Oncologia.

[38]  Tsung-Cheng Chang,et al.  c-Myc suppression of miR-23 a / b enhances mitochondrial glutaminase expression and glutamine metabolism , 2009 .

[39]  M. Barbacid,et al.  Oncogenes in human tumor cell lines: molecular cloning of a transforming gene from human bladder carcinoma cells. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[40]  S. Kaul,et al.  NIH 3T3 cells malignantly transformed by mot-2 show inactivation and cytoplasmic sequestration of the p53 protein , 1999, Cell Research.

[41]  L. Cantley,et al.  Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation , 2009, Science.

[42]  Z. Kovačević,et al.  Mitochondrial metabolism of glutamine and glutamate and its physiological significance. , 1983, Physiological reviews.

[43]  Gregory Stephanopoulos,et al.  Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. , 2009, Journal of biotechnology.

[44]  C. Dang,et al.  Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. , 2010, Cancer cell.

[45]  R. Deberardinis,et al.  Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis , 2007, Proceedings of the National Academy of Sciences.

[46]  J W Stayman,et al.  Amino acid, glucose, and lactic acid utilization in vivo by rat tumors. , 1982, Cancer research.

[47]  Gregory Stephanopoulos,et al.  Nontargeted elucidation of metabolic pathways using stable-isotope tracers and mass spectrometry. , 2010, Analytical chemistry.

[48]  Lilia Alberghina,et al.  Data recovery and integration from public databases uncovers transformation-specific transcriptional downregulation of cAMP-PKA pathway-encoding genes , 2009, BMC Bioinformatics.

[49]  H. Christofk,et al.  Identification of small molecule inhibitors of pyruvate kinase M2. , 2010, Biochemical pharmacology.

[50]  Emanuel Petricoin,et al.  Molecular profiling of human cancer , 2000, Nature Reviews Genetics.

[51]  L. Alberghina,et al.  A dominant negative RAS-specific guanine nucleotide exchange factor reverses neoplastic phenotype in K-ras transformed mouse fibroblasts , 2000, Oncogene.

[52]  J. L. Bos,et al.  ras oncogenes in human cancer: a review. , 1989, Cancer research.

[53]  Gregory Stephanopoulos,et al.  Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. , 2006, Metabolic engineering.

[54]  Lilia Alberghina,et al.  Expression of transforming K-Ras oncogene affects mitochondrial function and morphology in mouse fibroblasts. , 2006, Biochimica et biophysica acta.

[55]  Marta Cascante,et al.  K-ras Codon-Specific Mutations Produce Distinctive Metabolic Phenotypes in Human Fibroblasts , 2005 .

[56]  Marta Cascante,et al.  K-ras codon-specific mutations produce distinctive metabolic phenotypes in NIH3T3 mice [corrected] fibroblasts. , 2005, Cancer research.

[57]  J. Hayashi,et al.  ROS-Generating Mitochondrial DNA Mutations Can Regulate Tumor Cell Metastasis , 2008, Science.

[58]  Anthony Mancuso,et al.  Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction , 2008, Proceedings of the National Academy of Sciences.

[59]  A. Lane,et al.  Ras transformation requires metabolic control by 6-phosphofructo-2-kinase , 2006, Oncogene.

[60]  R. Weinberg,et al.  Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts , 1981, Nature.

[61]  L. Alberghina,et al.  Characterization and Properties of Dominant-negative Mutants of the Ras-specific Guanine Nucleotide Exchange Factor CDC25Mm * , 1999, The Journal of Biological Chemistry.

[62]  U. Sauer,et al.  Article number: 62 REVIEW Metabolic networks in motion: 13 C-based flux analysis , 2022 .

[63]  V. Hower,et al.  A systems biology view of cancer. , 2009, Biochimica et biophysica acta.

[64]  R. L. Brown,et al.  Development of a database of gas chromatographic retention properties of organic compounds. , 2007, Journal of chromatography. A.

[65]  G. Stephanopoulos,et al.  Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. , 2007, Metabolic engineering.