Heat diffusion kernel and distance on surface meshes and point sets

The heat diffusion distance and kernel have gained a central role in geometry processing and shape analysis. This paper addresses a novel discretization and spectrum-free computation of the diffusion kernel and distance on a 3D shape P represented as a triangle mesh or a point set. After rewriting different discretizations of the Laplace-Beltrami operator in a unified way and using an intrinsic scalar product on the space of functions on P, we derive a shape-intrinsic heat kernel matrix, together with the corresponding diffusion distances. Then, we propose an efficient computation of the heat distance and kernel through the solution of a set of sparse linear systems. In this way, we bypass the evaluation of the Laplacian spectrum, the selection of a specific subset of eigenpairs, and the use of multi-resolutive prolongation operators. The comparison with previous work highlights the main features of the proposed approach in terms of smoothness, stability to shape discretization, approximation accuracy, and computational cost.

[1]  Leonidas J. Guibas,et al.  Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.

[2]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[3]  R. Varga,et al.  Chebyshev rational approximations to e−x in [0, +∞) and applications to heat-conduction problems , 1969 .

[4]  Bernhard Schölkopf,et al.  Cluster Kernels for Semi-Supervised Learning , 2002, NIPS.

[5]  R. Varga Scientific Computations on Mathematical Problems and Conjectures , 1987 .

[6]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[7]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[8]  Shang-Hua Teng,et al.  Spectral partitioning works: planar graphs and finite element meshes , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[9]  Alexander J. Smola,et al.  Kernels and Regularization on Graphs , 2003, COLT.

[10]  J. Lafferty,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.

[11]  Yusu Wang,et al.  Eurographics Symposium on Geometry Processing 2009 Approximating Gradients for Meshes and Point Clouds via Diffusion Metric , 2022 .

[12]  W. Marsden I and J , 2012 .

[13]  Ulrike von Luxburg,et al.  From Graphs to Manifolds - Weak and Strong Pointwise Consistency of Graph Laplacians , 2005, COLT.

[14]  M. Ben-Chen,et al.  A multi-resolution approach to heat kernels on discrete surfaces , 2010, ACM Trans. Graph..

[15]  Giuseppe Patanè,et al.  Multi-scale Feature Spaces for Shape Processing and Analysis , 2010, 2010 Shape Modeling International Conference.

[16]  B. Prabhakaran,et al.  Point-Based Manifold Harmonics , 2012, IEEE Transactions on Visualization and Computer Graphics.

[17]  Ronald R. Coifman,et al.  Data Fusion and Multicue Data Matching by Diffusion Maps , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Mikhail Belkin,et al.  Towards a theoretical foundation for Laplacian-based manifold methods , 2005, J. Comput. Syst. Sci..

[19]  Hans-Peter Seidel,et al.  MovieReshape: tracking and reshaping of humans in videos , 2010, SIGGRAPH 2010.

[20]  Guillermo Sapiro,et al.  A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-rigid Shape Matching , 2010, International Journal of Computer Vision.

[21]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[22]  Mikhail Belkin,et al.  Convergence of Laplacian Eigenmaps , 2006, NIPS.

[23]  Rasmus Larsen,et al.  Shape Analysis Using the Auto Diffusion Function , 2009 .

[24]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[25]  Bruno Lévy,et al.  Spectral Geometry Processing with Manifold Harmonics , 2008, Comput. Graph. Forum.

[26]  Marc Alexa,et al.  Discrete Laplacians on general polygonal meshes , 2011, ACM Trans. Graph..

[27]  Zoubin Ghahramani,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.

[28]  Yousef Saad,et al.  Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..

[29]  Mikhail Belkin,et al.  Towards a Theoretical Foundation for Laplacian-Based Manifold Methods , 2005, COLT.

[30]  Leonidas J. Guibas,et al.  One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.

[31]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[32]  Danny C. Sorensen,et al.  Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..

[33]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[34]  Edwin R. Hancock,et al.  Geometric characterization and clustering of graphs using heat kernel embeddings , 2010, Image Vis. Comput..

[35]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[36]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[37]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[38]  Luiz Velho,et al.  A Hierarchical Segmentation of Articulated Bodies , 2008, Comput. Graph. Forum.

[39]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[40]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[41]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[42]  Giuseppe Patanè,et al.  wFEM heat kernel: Discretization and applications to shape analysis and retrieval , 2013, Comput. Aided Geom. Des..

[43]  Facundo Mémoli,et al.  Spectral Gromov-Wasserstein distances for shape matching , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[44]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[45]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..