Mechanisms of alamethicin ion channel inhibition by amiloride in zwitterionic tethered lipid bilayers

[1]  J. Lipkowski,et al.  Effects of Amiloride, an Ion Channel Blocker, on Alamethicin Pore Formation in Negatively Charged, Gold-Supported, Phospholipid Bilayers: A Molecular View. , 2019, Langmuir : the ACS journal of surfaces and colloids.

[2]  J. Lipkowski,et al.  Pore Forming Properties of Alamethicin in Negatively Charged Floating Bilayer Lipid Membranes Supported on Gold Electrodes. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[3]  J. Lipkowski,et al.  Direct visualization of alamethicin ion pores formed in a floating phospholipid membrane supported on a gold electrode surface , 2018 .

[4]  Johannes Salewski,et al.  Monitoring the Orientational Changes of Alamethicin during Incorporation into Bilayer Lipid Membranes. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[5]  J. Lipkowski,et al.  In situ electrochemical and PM-IRRAS studies of alamethicin ion channel formation in model phospholipid bilayers , 2017, Journal of Electroanalytical Chemistry.

[6]  A. Schwan,et al.  EIS and PM-IRRAS studies of alamethicin ion channels in a tethered lipid bilayer , 2017 .

[7]  A. Schwan,et al.  Gramicidin A ion channel formation in model phospholipid bilayers tethered to gold (111) electrode surfaces , 2017 .

[8]  L. Becucci,et al.  Mechanism of voltage-gated channel formation in lipid membranes. , 2016, Biochimica et biophysica acta.

[9]  A. Naito,et al.  Structure and orientation of antibiotic peptide alamethicin in phospholipid bilayers as revealed by chemical shift oscillation analysis of solid state nuclear magnetic resonance and molecular dynamics simulation. , 2015, Biochimica et biophysica acta.

[10]  C. Brosseau,et al.  In Situ PM–IRRAS Studies of Biomimetic Membranes Supported at Gold Electrode Surfaces , 2013 .

[11]  J. Lipkowski,et al.  Direct visualization of the alamethicin pore formed in a planar phospholipid matrix , 2012, Proceedings of the National Academy of Sciences.

[12]  F. Ivanauskas,et al.  Electrochemical impedance spectroscopy of tethered bilayer membranes. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[13]  De-sheng Wang,et al.  Inhibition of Na(+)/H(+) exchanger 1 by 5-(N-ethyl-N-isopropyl) amiloride reduces hypoxia-induced hepatocellular carcinoma invasion and motility. , 2010, Cancer letters.

[14]  W. Knoll,et al.  In situ PM-IRRAS studies of an archaea analogue thiolipid assembled on a au(111) electrode surface. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[15]  J. Kasianowicz,et al.  Molecular-scale structural and functional characterization of sparsely tethered bilayer lipid membranes , 2007, Biointerphases.

[16]  J. Lipkowski,et al.  Quantitative SNIFTIRS and PM IRRAS of Organic Molecules at Electrode Surfaces , 2006 .

[17]  M. Lösche,et al.  Enzyme activity to augment the characterization of tethered bilayer membranes. , 2006, The journal of physical chemistry. B.

[18]  W. Knoll,et al.  New method to measure packing densities of self-assembled thiolipid monolayers. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[19]  Claudio Toniolo,et al.  Incorporation of channel-forming peptides in a Hg-supported lipid bilayer , 2005 .

[20]  E. Cragoe,et al.  Amiloride and its analogs as tools in the study of ion transport , 1988, The Journal of Membrane Biology.

[21]  C. Mead,et al.  The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes , 1973, The Journal of Membrane Biology.

[22]  F. Reusser,et al.  A polypeptide antibacterial agent isolated fromTrichoderma viride , 1967, Experientia.

[23]  D. Pum,et al.  Highly robust lipid membranes on crystalline S-layer supports investigated by electrochemical impedance spectroscopy. , 2004, Biochimica et biophysica acta.

[24]  B. Cornell,et al.  A tethered bilayer sensor containing alamethicin channels and its detection of amiloride based inhibitors. , 2003, Biosensors & bioelectronics.

[25]  Huey W. Huang,et al.  Sigmoidal concentration dependence of antimicrobial peptide activities: a case study on alamethicin. , 2002, Biophysical journal.

[26]  B. Masereel,et al.  Novel inhibitors of the sodium-calcium exchanger: benzene ring analogues of N-guanidino substituted amiloride derivatives. , 2001, European journal of medicinal chemistry.

[27]  B. Blazer-Yost,et al.  The amiloride-sensitive epithelial Na+ channel: binding sites and channel densities. , 1997, The American journal of physiology.

[28]  G. Ellis‐Davies,et al.  Photolabile Amiloride Derivatives as Cation Site Probes of the Na,K-ATPase (*) , 1996, The Journal of Biological Chemistry.

[29]  H. Mantsch,et al.  Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy. , 1991, Chemistry and physics of lipids.

[30]  J. Lipkowski,et al.  Measurement of Physical Adsorption of Neutral Organic Species at Solid Electrodes , 1986 .

[31]  Frederic M. Richards,et al.  A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-Å resolution , 1982, Nature.

[32]  G Baumann,et al.  A molecular model of membrane excitability. , 1974, Journal of supramolecular structure.

[33]  J. Aceves,et al.  The effect of amiloride on sodium and potassium fluxes in red cells , 1973, The Journal of physiology.

[34]  J. Jones,et al.  Pyrazine diuretics. II. N-amidino-3-amino-5-substituted 6-halopyrazinecarboxamides. , 1967, Journal of medicinal chemistry.