Persister cells and the riddle of biofilm survival

[1]  S. Leibler,et al.  Bacterial Persistence as a Phenotypic Switch , 2004, Science.

[2]  H. Engelberg-Kulka,et al.  Escherichia coli mazEF-Mediated Cell Death Is Triggered by Various Stressful Conditions , 2004, Journal of bacteriology.

[3]  J. Vilar,et al.  From molecular noise to behavioural variability in a single bacterium , 2004, Nature.

[4]  R. Mei,et al.  Killing by Ampicillin and Ofloxacin Induces Overlapping Changes in Escherichia coli Transcription Profile , 2004, Antimicrobial Agents and Chemotherapy.

[5]  Michael Otto,et al.  Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system , 2004, Cellular microbiology.

[6]  P. Stewart,et al.  A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance , 2003, Nature.

[7]  Jason M. Brown,et al.  A Novel Family of Escherichia coli Toxin-Antitoxin Gene Pairs , 2003, Journal of bacteriology.

[8]  K. Rice,et al.  Death's toolbox: examining the molecular components of bacterial programmed cell death , 2003, Molecular microbiology.

[9]  A. Jesaitis,et al.  Compromised Host Defense on Pseudomonas aeruginosa Biofilms: Characterization of Neutrophil and Biofilm Interactions 1 , 2003, The Journal of Immunology.

[10]  K. Gerdes,et al.  Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA. , 2003, Journal of molecular biology.

[11]  Finbarr Hayes,et al.  Toxins-Antitoxins: Plasmid Maintenance, Programmed Cell Death, and Cell Cycle Arrest , 2003, Science.

[12]  John Chan,et al.  Latent tuberculosis: mechanisms of host and bacillus that contribute to persistent infection. , 2003, The Lancet. Infectious diseases.

[13]  Philip S. Stewart,et al.  Diffusion in Biofilms , 2003, Journal of bacteriology.

[14]  Måns Ehrenberg,et al.  The Bacterial Toxin RelE Displays Codon-Specific Cleavage of mRNAs in the Ribosomal A Site , 2003, Cell.

[15]  M. Shirtliff,et al.  Human Leukocytes Adhere to, Penetrate, and Respond to Staphylococcus aureus Biofilms , 2002, Infection and Immunity.

[16]  D. Kell,et al.  A family of autocrine growth factors in Mycobacterium tuberculosis , 2002, Molecular microbiology.

[17]  K. Gerdes,et al.  Rapid induction and reversal of a bacteriostatic condition by controlled expression of toxins and antitoxins , 2002, Molecular microbiology.

[18]  K. Lewis,et al.  Isolating "Uncultivable" Microorganisms in Pure Culture in a Simulated Natural Environment , 2002, Science.

[19]  Frederick M. Ausubel,et al.  Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation , 2002, Nature.

[20]  V. Skulachev Programmed Death Phenomena: From Organelle to Organism , 2002, Annals of the New York Academy of Sciences.

[21]  K. Lewis,et al.  Biofilms and Planktonic Cells of Pseudomonas aeruginosa Have Similar Resistance to Killing by Antimicrobials , 2001, Journal of bacteriology.

[22]  K. Lewis,et al.  Bacterial resistance to antimicrobials. , 2001 .

[23]  G. Bogosian,et al.  A matter of bacterial life and death , 2001, EMBO reports.

[24]  K. Lewis,et al.  Riddle of Biofilm Resistance , 2001, Antimicrobial Agents and Chemotherapy.

[25]  H. Engelberg-Kulka,et al.  Programmed Cell Death in Escherichia coli: Some Antibiotics Can Trigger mazEFLethality , 2001, Journal of bacteriology.

[26]  G. Church,et al.  RNA expression analysis using a 30 base pair resolution Escherichia coli genome array , 2000, Nature Biotechnology.

[27]  K. Lewis,et al.  Programmed Death in Bacteria , 2000, Microbiology and Molecular Biology Reviews.

[28]  P. Stewart,et al.  Role of Antibiotic Penetration Limitation in Klebsiella pneumoniae Biofilm Resistance to Ampicillin and Ciprofloxacin , 2000, Antimicrobial Agents and Chemotherapy.

[29]  A. Brooun,et al.  A Dose-Response Study of Antibiotic Resistance inPseudomonas aeruginosa Biofilms , 2000, Antimicrobial Agents and Chemotherapy.

[30]  P. Stewart,et al.  Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide , 1999, Molecular microbiology.

[31]  P. Stewart,et al.  Protective Role of Catalase in Pseudomonas aeruginosa Biofilm Resistance to Hydrogen Peroxide , 1999, Applied and Environmental Microbiology.

[32]  G. Walker,et al.  A model for a umuDC-dependent prokaryotic DNA damage checkpoint. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[34]  I. Chopra,et al.  Stabilization of Rhizobium symbiosis plasmids. , 1999, Microbiology.

[35]  I. Chopra,et al.  Joint Tolerance to β-Lactam and Fluoroquinolone Antibiotics in Escherichia coli Results from Overexpression of hipA , 1998, Antimicrobial Agents and Chemotherapy.

[36]  K. Lewis,et al.  Pathogen resistance as the origin of kin altruism. , 1998, Journal of theoretical biology.

[37]  Tsuyoshi Otani,et al.  In Vitro and In Vivo Activities of Levofloxacin against Biofilm-Producing Pseudomonas aeruginosa , 1998, Antimicrobial Agents and Chemotherapy.

[38]  A. Wada Growth phase coupled modulation of Escherichia coli ribosomes , 1998, Genes to cells : devoted to molecular & cellular mechanisms.

[39]  M. Sugai,et al.  Permeation of antimicrobial agents through Pseudomonas aeruginosa biofilms: a simple method. , 1997, Chemotherapy.

[40]  P. Gilbert,et al.  Biofilm Susceptibility to Antimicrobials , 1997, Advances in dental research.

[41]  B. Irwin,et al.  Autoregulation of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis , 1994, Journal of bacteriology.

[42]  M. Mardis,et al.  Structure and organization of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis , 1991, Journal of bacteriology.

[43]  M. R. Brown,et al.  Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response , 1990, Antimicrobial Agents and Chemotherapy.

[44]  J. Costerton,et al.  The biofilm glycocalyx as a resistance factor. , 1990, The Journal of antimicrobial chemotherapy.

[45]  N. Hodges,et al.  Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived Pseudomonas aeruginosa. , 1988, The Journal of antimicrobial chemotherapy.

[46]  Nichols,et al.  Inhibition of tobramycin diffusion by binding to alginate , 1988, Antimicrobial Agents and Chemotherapy.

[47]  H. Moyed,et al.  Molecular cloning and expression of hipA, a gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis , 1986, Journal of bacteriology.

[48]  A. Tomasz,et al.  The rate of killing of Escherichia coli by beta-lactam antibiotics is strictly proportional to the rate of bacterial growth. , 1986, Journal of general microbiology.

[49]  H. Moyed,et al.  hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis , 1983, Journal of bacteriology.

[50]  D. Koshland,et al.  Non-genetic individuality: chance in the single cell , 1976, Nature.

[51]  A. Tomasz,et al.  Multiple Antibiotic Resistance in a Bacterium with Suppressed Autolytic System , 1970, Nature.

[52]  J. Bigger TREATMENT OF STAPHYLOCOCCAL INFECTIONS WITH PENICILLIN BY INTERMITTENT STERILISATION , 1944 .

[53]  K. Lewis,et al.  Persister cells and tolerance to antimicrobials. , 2004, FEMS microbiology letters.

[54]  R. Colwell,et al.  Nonculturable Microorganisms in the Environment , 2000, Springer US.