Temperature-concentration phase diagram of P 2 -Na x CoO 2 from first-principles calculations

Temperature-concentration phase diagrams for ${\text{Na}}_{x}{\text{CoO}}_{2}$ $(0.5\ensuremath{\le}x\ensuremath{\le}1)$ are obtained by combining density functional theory (DFT) in the generalized gradient approximation (GGA) and in the GGA with Hubbard $U$ correction $(\text{GGA}+U)$ with the cluster expansion and Monte Carlo simulation technique. In the GGA, holes are delocalized over the Co layer, while in $\text{GGA}+U$ the charges on the Co layer completely localize, forming distinct ${\text{Co}}^{3+}$ and ${\text{Co}}^{4+}$ cations. The leading interactions in GGA are long-range in-plane electrostatics and relaxation effects, whereas in $\text{GGA}+U$ Co-Co interactions dominate. Comparison of ground states, $c$-lattice parameter, and Na1/Na2 ratio with experimental results consistently suggests that GGA is a better approximation for $0.5\ensuremath{\le}x\ensuremath{\le}0.8$.

[1]  Wolverton,et al.  Cluster expansions of alloy energetics in ternary intermetallics. , 1994, Physical review. B, Condensed matter.

[2]  F. Ducastelle,et al.  Generalized cluster description of multicomponent systems , 1984 .

[3]  P. Hagenmuller,et al.  Sur de nouveaux bronzes oxygénés de formule NaχCoO2 (χ1). Le système cobalt-oxygène-sodium , 1973 .

[4]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[5]  J. Cho,et al.  Electrochemical de-intercalation, oxygen non-stoichiometry, and crystal growth of NaxCoO2−δ , 2004, cond-mat/0405158.

[6]  Kazunori Takada,et al.  Superconductivity in two-dimensional CoO2 layers , 2003, Nature.

[7]  Gerbrand Ceder,et al.  First-principles alloy theory in oxides , 2000 .

[8]  T. He,et al.  Coupling between electronic and structural degrees of freedom in the triangular lattice conductor NaxCoO2 , 2004, cond-mat/0406570.

[9]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[10]  R. Cava,et al.  Charge ordering, commensurability, and metallicity in the phase diagram of the layered NaxCoO2. , 2003, Physical Review Letters.

[11]  J. Attfield,et al.  High-resolution neutron diffraction study of possible charge ordering in Na0.5CoO2 , 2006 .

[12]  G. Ceder,et al.  A Model to Predict Ionic Disorder and Phase Diagrams: Application to CaO-MgO, Gd2O3-ZrO2, and to Sodium β′′-alumina , 1997 .

[13]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[14]  Christopher M Wolverton,et al.  First-principles prediction of equilibrium precipitate shapes in Al-Cu alloys , 1999 .

[15]  J. Kulda,et al.  Three-dimensional spin fluctuations in Na0.75CoO2. , 2004, Physical review letters.

[16]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[17]  Anton Van der Ven,et al.  Ab initio study of sodium ordering in Na{sub 0.75}CoOâ and its relation to Co{sup 3+}/Co{sup 4+} charge ordering , 2005 .

[18]  Gerbrand Ceder,et al.  Configurational Electronic Entropy and the Phase Diagram of Mixed-Valence Oxides: The Case of Li$_x$FePO$_4$ , 2006 .

[19]  Alex Zunger,et al.  Cation and vacancy ordering in Li x CoO 2 , 1998 .

[20]  J. Akimoto,et al.  Single-crystal growth, crystal and electronic structure of NaCoO2 , 2003 .

[21]  N. Marzari,et al.  Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. , 2006, Physical review letters.

[22]  Ceder,et al.  Convergent real-space cluster expansion for configurational disorder in ionic systems. , 1995, Physical review. B, Condensed matter.

[23]  J. M. Cowley X‐Ray Measurement of Order in Single Crystals of Cu3Au , 1950 .

[24]  T. Motohashi,et al.  Unconventional electronic transition in NaxCoO2 with a precisely controlled Na nonstoichiometry , 2003 .

[25]  C A Marianetti,et al.  A first-order Mott transition in LixCoO2 , 2004, Nature materials.

[26]  A. van de Walle,et al.  Automating First-Principles Phase Diagram Calculations , 2002 .

[27]  M. Onoda,et al.  Modulated and unmodulated structures, and the transport mechanisms in the triangular lattice system NaxCoO2 with 0.48, 0.58 and 0.65 , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[28]  B. Lake,et al.  Patterning of sodium ions and the control of electrons in sodium cobaltate , 2005, Nature.

[29]  R. Balsys Refinement of the structure of Na0.74CoO2 using neutron powder diffraction , 1997 .

[30]  B. Keimer,et al.  Magnetic ordering and spin waves in Na0.82CoO2. , 2004, Physical review letters.

[31]  David J. Singh Electronic structure of NaCo 2 O 4 , 2000 .

[32]  Christopher M Wolverton,et al.  First-Principles Prediction of Vacancy Order-Disorder and Intercalation Battery Voltages in Li x CoO 2 , 1998 .

[33]  Christopher M Wolverton,et al.  Prediction of Li Intercalation and Battery Voltages in Layered vs. Cubic Li[sub x]CoO[sub 2] , 1998 .

[34]  P. Dordor,et al.  Transport properties of NaxCoO2−y , 1984 .

[35]  Gerbrand Ceder,et al.  Ordering in Lix(Ni0.5Mn0.5)O2 and its relation to charge capacity and electrochemical behavior in rechargeable lithium batteries , 2004 .

[36]  Ichiro Terasaki,et al.  Large thermoelectric power in NaCo 2 O 4 single crystals , 1997 .

[37]  Y. Meng,et al.  An investigation of the sodium patterning in Na(x)CoO(2) (0.5 < or = x < or = 1) by density functional theory methods. , 2008, The Journal of chemical physics.

[38]  P. Hagenmuller,et al.  Structural classification and properties of the layered oxides , 1980 .

[39]  Ceder,et al.  Model for configurational thermodynamics in ionic systems. , 1995, Physical review letters.

[40]  Gerbrand Ceder,et al.  The electronic structure and band gap of LiFePO4 and LiMnPO4 , 2004, cond-mat/0506125.

[41]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[42]  V. Ozoliņš,et al.  A first-principles approach to modeling alloy phase equilibria , 2001 .

[43]  A. Quong,et al.  First-principles calculations of bulk and interfacial thermodynamic properties for fcc-based Al-Sc alloys , 1998 .

[44]  Matteo Cococcioni,et al.  Towards more accurate First Principles prediction of redox potentials in transition-metal compounds with LDA+U , 2004, cond-mat/0406382.

[45]  V. Ozoliņš,et al.  Effects of vibrational entropy on the Al–Si phase diagram , 2005 .

[46]  R. Cava,et al.  Large enhancement of the thermopower in NaxCoO2 at high Na doping , 2006, Nature materials.

[47]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[48]  Wang,et al.  Generalized gradient approximation for the exchange-correlation hole of a many-electron system. , 1996, Physical review. B, Condensed matter.

[49]  Yang Shao-Horn,et al.  Atomic resolution of lithium ions in LiCoO2 , 2003, Nature materials.

[50]  Y. Meng,et al.  Phase Transitions in the LiNi0.5Mn0.5O2 System with Temperature , 2007 .

[51]  R. Cava,et al.  Low temperature phase transitions and crystal structure of Na0.5CoO2 , 2004, cond-mat/0402255.

[52]  H. Sheu,et al.  Searching for stable Na-ordered phases in single-crystal samples ofγ−NaxCoO2 , 2007, 0708.0280.

[53]  J. Buršík Monte Carlo simulation of ordering in fcc-based stoichiometric A3B and AB solid solutions , 2002 .

[54]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[55]  H. Yang,et al.  Structural phase transitions and sodium ordering in Na0.5CoO2: a combined electron diffraction and Raman spectroscopy study , 2004, cond-mat/0412578.

[56]  Stephane Levasseur,et al.  The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and 7Li NMR study , 1999 .

[57]  Anton Van der Ven,et al.  First-principles calculations of lithium ordering and phase stability on Li x NiO 2 , 2002 .