VLBI-Gaia offsets favor parsec-scale jet direction in active galactic nuclei

Context. The data release 1 (DR1) of milliarcsecond-scale accurate optical positions of stars and galaxies was recently published by the space mission Gaia . Aims. We study the offsets of highly accurate absolute radio (very long baseline interferometry, VLBI) and optical positions of active galactic nuclei (AGN) to see whether or not a signature of wavelength-dependent parsec-scale structure can be seen. Methods. We analyzed VLBI and Gaia positions and determined the direction of jets in 2957 AGNs from their VLBI images. Results. We find that there is a statistically significant excess of sources with VLBI-to- Gaia position offset in directions along and opposite to the jet. Offsets along the jet vary from 0 to tens of mas. Offsets in the opposite direction do not exceed 3 mas. Conclusions. The presense of strong, extended parsec-scale optical jet structures in many AGNs is required to explain all observed VLBI- Gaia offsets along the jet direction. The offsets in the opposite direction shorter than 1 mas can be explained either by a non-point-like VLBI jet structure or a “core-shift” effect due to synchrotron opacity.

[1]  M. Bremer,et al.  Superluminal non-ballistic jet swing in the quasar NRAO 150 revealed by mm-VLBI , 2007, 0710.5435.

[2]  Y. Kovalev,et al.  THE THIRD VLBA CALIBRATOR SURVEY — VCS3 , 2004 .

[3]  S. O’Sullivan,et al.  Magnetic field strength and spectral distribution of six parsec-scale active galactic nuclei jets , 2009, 0907.5211.

[4]  Y. Kovalev,et al.  Single-epoch VLBI imaging study of bright active galactic nuclei at 2 GHz and 8 GHz , 2012, 1205.5559.

[5]  E. Ros,et al.  Catching the radio flare in CTA 102 - III. Core-shift and spectral analysis , 2013, 1306.6208.

[6]  J. A. Zensus,et al.  MOJAVE: Monitoring of Jets in AGN with VLBA Experiments. V. Multi-epoch VLBA Images , 2008, 0812.3947.

[7]  E. F. Arias,et al.  THE SECOND REALIZATION OF THE INTERNATIONAL CELESTIAL REFERENCE FRAME BY VERY LONG BASELINE INTERFEROMETRY , 2015 .

[8]  I. Shapiro,et al.  VLBI study of 1038+528 A and B: discovery of wavelength dependence of peak brightness location , 1984 .

[9]  P. Charlot Radio-source structure in astrometric and geodetic very long baseline interferometry , 1990 .

[10]  N. Gehrels,et al.  The VLBA Imaging and Polarimetry Survey at 5 GHz , 2006, astro-ph/0611459.

[11]  K. Sokolovsky,et al.  The core shift effect in the blazar 3C 454.3 , 2013, 1307.4100.

[12]  V. Pavlidou,et al.  Detecting the elusive blazar counter-jets , 2016, 1610.06561.

[13]  Y. Kovalev,et al.  On significance of VLBI/Gaia position offsets , 2016, 1611.02630.

[14]  C. Barache,et al.  Gaia Data Release 1: Astrometry - one billion positions, two million proper motions and parallaxes , 2016, 1609.04303.

[15]  B. Piner,et al.  RELATIVISTIC JETS IN THE RADIO REFERENCE FRAME IMAGE DATABASE. II. BLAZAR JET ACCELERATIONS FROM THE FIRST 10 YEARS OF DATA (1994–2003) , 2012, 1208.4399.

[16]  D. MacMillan,et al.  The Second VLBA Calibrator Survey: VCS2 , 2003 .

[17]  Leonid Petrov VLBA Calibrator Survey 9 (VCS-9) , 2016 .

[18]  K. I. Kellermann,et al.  MOJAVE. X. PARSEC-SCALE JET ORIENTATION VARIATIONS AND SUPERLUMINAL MOTION IN ACTIVE GALACTIC NUCLEI , 2013, 1308.2713.

[19]  E. Fomalont,et al.  The VLBA Calibrator Survey—VCS1 , 2002, astro-ph/0201414.

[20]  Karen D. Baver,et al.  International VLBI Service for Geodesy and Astrometry: 2000 General Meeting Proceedings , 2000 .

[21]  A. Marscher,et al.  The VLBA-BU-BLAZAR Multi-Wavelength Monitoring Program , 2016 .

[22]  E. Fomalont,et al.  THE CELESTIAL REFERENCE FRAME AT 24 AND 43 GHz. II. IMAGING , 2010, 1003.1067.

[23]  Paul S. Smith,et al.  The inner jet of an active galactic nucleus as revealed by a radio-to-γ-ray outburst , 2008, Nature.

[24]  The Fifth VLBA Calibrator Survey: VCS5 , 2006, astro-ph/0607524.

[25]  A. Lobanov,et al.  Opacity in compact extragalactic radio sources and its effect on astrophysical and astrometric studies , 2008, 0802.2970.

[26]  M. Cohen,et al.  MOJAVE: Monitoring of Jets in Active galactic nuclei with VLBA Experiments , 2012, 1207.5457.

[27]  F. Schinzel,et al.  NEW ASSOCIATIONS OF GAMMA-RAY SOURCES FROM THE FERMI SECOND SOURCE CATALOG , 2014, 1408.6217.

[28]  R. Porcas Radio astrometry with chromatic AGN core positions , 2009, 0909.0933.

[29]  F. J. Abellán,et al.  Absolute kinematics of radio-source components in the complete S5 polar cap sample. IV. Proper motions of the radio cores over a decade and spectral properties , 2016, 1607.05089.

[30]  Axel Nothnagel,et al.  International VLBI Service for Geodesy and Astrometry , 2017, Journal of Geodesy.

[31]  D. Michalik,et al.  Gaia Data Release 1 - Reference frame and optical properties of ICRF sources , 2016, 1609.07255.

[32]  K. Sokolovsky,et al.  A VLBA survey of the core shift effect in AGN jets - I. Evidence of dominating synchrotron opacity , 2011, 1103.6032.

[33]  E. Fomalont,et al.  THE SIXTH VLBA CALIBRATOR SURVEY: VCS6 , 2008, 0801.3895.

[34]  The VLBA Imaging And Polarimetry Survey at 5 GHz , 2006, astro-ph/0611459.

[35]  Paul S. Smith,et al.  PROBING THE INNER JET OF THE QUASAR PKS 1510−089 WITH MULTI-WAVEBAND MONITORING DURING STRONG GAMMA-RAY ACTIVITY , 2010, 1001.2574.

[36]  Y. Kovalev,et al.  Milky Way scattering properties and intrinsic sizes of active galactic nuclei cores probed by very long baseline interferometry surveys of compact extragalactic radio sources , 2015, 1507.02459.

[37]  E. Ros,et al.  VLBA observations of a rare multiple quasar imaging event caused by refraction in the interstellar medium , 2013, 1305.6005.

[38]  William B. Sparks,et al.  HUBBLE SPACE TELESCOPE Observations of Superluminal Motion in the M87 Jet , 1999 .

[39]  J. A. Fern'andez-Ontiveros,et al.  The central parsecs of M87: jet emission and an elusive accretion disc , 2015, 1508.02302.

[40]  Leonid Petrov,et al.  Precise geodesy with the Very Long Baseline Array , 2008, 0806.0167.