A signature-based algorithm for computing Gröbner bases in solvable polynomial algebras
暂无分享,去创建一个
Yang Zhang | Yao Sun | Xiaodong Ma | Dingkang Wang | Yang Zhang | Dingkang Wang | Yao Sun | Xiaodong Ma
[1] A. I. Zobnin. Generalization of the F5 algorithm for calculating Gröbner bases for polynomial ideals , 2010, Programming and Computer Software.
[2] Volker Weispfenning,et al. Non-Commutative Gröbner Bases in Algebras of Solvable Type , 1990, J. Symb. Comput..
[3] W. W. Adams,et al. An Introduction to Gröbner Bases , 2012 .
[4] Shuhong Gao,et al. A new algorithm for computing Groebner bases , 2010, IACR Cryptol. ePrint Arch..
[5] Adi Shamir,et al. Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations , 2000, EUROCRYPT.
[6] Carlo Traverso,et al. Gröbner bases computation using syzygies , 1992, ISSAC '92.
[7] Teo Mora,et al. An Introduction to Commutative and Noncommutative Gröbner Bases , 1994, Theor. Comput. Sci..
[8] Mark Giesbrecht,et al. Non-Commutative Grobner Bases in Poincare-Birkhoff-Witt Extensions , 2002 .
[9] Lei Huang,et al. A new conception for computing gröbner basis and its applications , 2010, ArXiv.
[10] Ferdinando Mora,et al. Groebner Bases for Non-Commutative Polynomial Rings , 1985, AAECC.
[11] Bruno Buchberger,et al. A criterion for detecting unnecessary reductions in the construction of Groebner bases , 1979, EUROSAM.
[12] Yao Sun,et al. A New Proof for the Correctness of F5 (F5-Like) Algorithm , 2010, 1004.0084.
[13] Christian Eder,et al. Signature-based algorithms to compute Gröbner bases , 2011, ISSAC '11.
[14] David A. Cox,et al. Using Algebraic Geometry , 1998 .
[15] Hans Schönemann,et al. SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.
[16] J. Faugère. A new efficient algorithm for computing Gröbner bases (F4) , 1999 .
[17] Shuhong Gao,et al. New algorithms for computing groebner bases , 2011 .
[18] Yao Sun,et al. A generalized criterion for signature related Gröbner basis algorithms , 2011, ISSAC '11.
[19] Franz Winkler,et al. On Computing Gröbner Bases in Rings of Differential Operators with Coefficients in a Ring , 2007, Math. Comput. Sci..
[20] Rüdiger Gebauer,et al. Buchberger's algorithm and staggered linear bases , 1986, SYMSAC '86.
[21] Bruno Buchberger,et al. Gröbner Bases in Rings of Differential Operators , 1998 .
[22] Yao Sun,et al. The F5 algorithm in Buchberger’s style , 2010, J. Syst. Sci. Complex..
[23] Viktor Levandovskyy,et al. Plural: a computer algebra system for noncommutative polynomial algebras , 2003, ISSAC '03.
[24] André Galligo,et al. Some algorithmic questions on ideals of differential operators , 1985 .
[25] J. Faugère. A new efficient algorithm for computing Gröbner bases (F4) , 1999 .
[26] José Gómez-Torrecillas,et al. Algorithmic Methods in Non-Commutative Algebra: Applications to Quantum Groups , 2003 .
[27] Amir Hashemi,et al. Extended F5 criteria , 2010, J. Symb. Comput..
[28] Christian Eder,et al. Modifying Faug\`ere's F5 Algorithm to ensure termination , 2010, 1006.0318.
[29] Bruno Salvy,et al. Non-Commutative Elimination in Ore Algebras Proves Multivariate Identities , 1998, J. Symb. Comput..
[30] John Perry,et al. The F5 criterion revised , 2011, J. Symb. Comput..
[31] Carlo Traverso,et al. “One sugar cube, please” or selection strategies in the Buchberger algorithm , 1991, ISSAC '91.
[32] Christian Eder,et al. F5C: A variant of Faugère's F5 algorithm with reduced Gröbner bases , 2009, J. Symb. Comput..
[33] 임종인,et al. Gröbner Bases와 응용 , 1995 .
[34] Daniel Lazard,et al. Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.
[35] Shuhong Gao,et al. A new incremental algorithm for computing Groebner bases , 2010, ISSAC.
[36] Yao Sun,et al. On computing Gröbner bases in rings of differential operators , 2010 .
[37] Yao Sun,et al. Solving Detachability Problem for the Polynomial Ring by Signature-based Groebner Basis Algorithms , 2011, ArXiv.