A signature-based algorithm for computing Gröbner bases in solvable polynomial algebras

Signature-based algorithms, including F5, F5C, G2V and GVW, are efficient algorithms for computing Gröbner bases in commutative polynomial rings. In this paper, we present a signature-based algorithm to compute Gröbner bases in solvable polynomial algebras which include usual commutative polynomial rings and some non-commutative polynomial rings like Weyl algebra. The generalized Rewritten Criterion (discussed in Sun and Wang, ISSAC 2011) is used to reject redundant computations. When this new algorithm uses the partial order implied by GVW, its termination is proved without special assumptions on computing orders of critical pairs. Data structures similar to F5 can be used to speed up this new algorithm, and Gröbner bases of syzygy modules of input polynomials can be obtained from the outputs easily. Experimental data show that most redundant computations can be avoided in this new algorithm.

[1]  A. I. Zobnin Generalization of the F5 algorithm for calculating Gröbner bases for polynomial ideals , 2010, Programming and Computer Software.

[2]  Volker Weispfenning,et al.  Non-Commutative Gröbner Bases in Algebras of Solvable Type , 1990, J. Symb. Comput..

[3]  W. W. Adams,et al.  An Introduction to Gröbner Bases , 2012 .

[4]  Shuhong Gao,et al.  A new algorithm for computing Groebner bases , 2010, IACR Cryptol. ePrint Arch..

[5]  Adi Shamir,et al.  Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations , 2000, EUROCRYPT.

[6]  Carlo Traverso,et al.  Gröbner bases computation using syzygies , 1992, ISSAC '92.

[7]  Teo Mora,et al.  An Introduction to Commutative and Noncommutative Gröbner Bases , 1994, Theor. Comput. Sci..

[8]  Mark Giesbrecht,et al.  Non-Commutative Grobner Bases in Poincare-Birkhoff-Witt Extensions , 2002 .

[9]  Lei Huang,et al.  A new conception for computing gröbner basis and its applications , 2010, ArXiv.

[10]  Ferdinando Mora,et al.  Groebner Bases for Non-Commutative Polynomial Rings , 1985, AAECC.

[11]  Bruno Buchberger,et al.  A criterion for detecting unnecessary reductions in the construction of Groebner bases , 1979, EUROSAM.

[12]  Yao Sun,et al.  A New Proof for the Correctness of F5 (F5-Like) Algorithm , 2010, 1004.0084.

[13]  Christian Eder,et al.  Signature-based algorithms to compute Gröbner bases , 2011, ISSAC '11.

[14]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[15]  Hans Schönemann,et al.  SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.

[16]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[17]  Shuhong Gao,et al.  New algorithms for computing groebner bases , 2011 .

[18]  Yao Sun,et al.  A generalized criterion for signature related Gröbner basis algorithms , 2011, ISSAC '11.

[19]  Franz Winkler,et al.  On Computing Gröbner Bases in Rings of Differential Operators with Coefficients in a Ring , 2007, Math. Comput. Sci..

[20]  Rüdiger Gebauer,et al.  Buchberger's algorithm and staggered linear bases , 1986, SYMSAC '86.

[21]  Bruno Buchberger,et al.  Gröbner Bases in Rings of Differential Operators , 1998 .

[22]  Yao Sun,et al.  The F5 algorithm in Buchberger’s style , 2010, J. Syst. Sci. Complex..

[23]  Viktor Levandovskyy,et al.  Plural: a computer algebra system for noncommutative polynomial algebras , 2003, ISSAC '03.

[24]  André Galligo,et al.  Some algorithmic questions on ideals of differential operators , 1985 .

[25]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[26]  José Gómez-Torrecillas,et al.  Algorithmic Methods in Non-Commutative Algebra: Applications to Quantum Groups , 2003 .

[27]  Amir Hashemi,et al.  Extended F5 criteria , 2010, J. Symb. Comput..

[28]  Christian Eder,et al.  Modifying Faug\`ere's F5 Algorithm to ensure termination , 2010, 1006.0318.

[29]  Bruno Salvy,et al.  Non-Commutative Elimination in Ore Algebras Proves Multivariate Identities , 1998, J. Symb. Comput..

[30]  John Perry,et al.  The F5 criterion revised , 2011, J. Symb. Comput..

[31]  Carlo Traverso,et al.  “One sugar cube, please” or selection strategies in the Buchberger algorithm , 1991, ISSAC '91.

[32]  Christian Eder,et al.  F5C: A variant of Faugère's F5 algorithm with reduced Gröbner bases , 2009, J. Symb. Comput..

[33]  임종인,et al.  Gröbner Bases와 응용 , 1995 .

[34]  Daniel Lazard,et al.  Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.

[35]  Shuhong Gao,et al.  A new incremental algorithm for computing Groebner bases , 2010, ISSAC.

[36]  Yao Sun,et al.  On computing Gröbner bases in rings of differential operators , 2010 .

[37]  Yao Sun,et al.  Solving Detachability Problem for the Polynomial Ring by Signature-based Groebner Basis Algorithms , 2011, ArXiv.