Discrete Optimization: The Case of Generalized BCC Lattice
暂无分享,去创建一个
Benedek Nagy | Béla Vizvári | Gergely Kovács | Gergely Stomfai | Neşet Deni̇z Turgay | Neşet Deniz Turgay | B. Vizvári | B. Nagy | G. Kovács | Gergely Stomfai
[1] Eduard Gröller,et al. Towards an Unbiased Comparison of CC, BCC, and FCC Lattices in Terms of Prealiasing , 2014, Comput. Graph. Forum.
[2] Benedek Nagy,et al. Chamfer distances on the isometric grid: a structural description of minimal distances based on linear programming approach , 2019, J. Comb. Optim..
[3] Petros Maragos,et al. Optimum design of chamfer distance transforms , 1998, IEEE Trans. Image Process..
[4] Alexander Schrijver,et al. On total dual integrality , 1981 .
[5] Balázs Csébfalvi. An Evaluation of Prefiltered B-Spline Reconstruction for Quasi-Interpolation on the Body-Centered Cubic Lattice , 2010, IEEE Transactions on Visualization and Computer Graphics.
[6] A. ROSENFELD,et al. Distance functions on digital pictures , 1968, Pattern Recognit..
[7] Robert G. Jeroslow,et al. Some Basis Theorems for Integral Monoids , 1978, Math. Oper. Res..
[8] Benedek Nagy,et al. Path-based distance functions in n-dimensional generalizations of the face- and body-centered cubic grids , 2009, Discret. Appl. Math..
[9] Fatih Celiker,et al. On Euclidean norm approximations , 2010, Pattern Recognit..
[10] Benedek Nagy,et al. Weighted Distances and Digital Disks on the Khalimsky Grid , 2016, Journal of Mathematical Imaging and Vision.
[11] Gunilla Borgefors,et al. Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..
[12] Benedek Nagy,et al. On disks of the triangular grid: An application of optimization theory in discrete geometry , 2020, Discret. Appl. Math..
[13] J. Tinbergen. Some Remarks on the Problem of Dollar Scarcity , 1949 .