Quasi-universality in single-cell sequencing data
暂无分享,去创建一个
Andrew J. Blumberg | Raul Rabadan | Mykola Bordyuh | Luis Aparicio | A. Blumberg | R. Rabadán | Luis Aparicio | M. Bordyuh | Luis C. Aparicio
[1] Mauro J. Muraro,et al. A Single-Cell Transcriptome Atlas of the Human Pancreas , 2016, Cell systems.
[2] H. Yau,et al. Universality of general $\beta$-ensembles , 2011, 1104.2272.
[3] Paul Hoffman,et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.
[4] S. Péché,et al. Universality of local eigenvalue statistics for some sample covariance matrices , 2005 .
[5] F. Dyson. Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .
[6] Jun Yin,et al. Edge universality of correlation matrices , 2011, 1112.2381.
[7] E. Pierson,et al. ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis , 2015, Genome Biology.
[8] N. Pillai,et al. Universality of covariance matrices , 2011, 1110.2501.
[9] Chun Jimmie Ye,et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation , 2017, Nature Biotechnology.
[10] Noureddine El Karoui,et al. The spectrum of kernel random matrices , 2010, 1001.0492.
[11] R. Tibshirani,et al. Sparse Principal Component Analysis , 2006 .
[12] Howard Y. Chang,et al. Single-cell chromatin accessibility reveals principles of regulatory variation , 2015, Nature.
[13] Kevin R. Moon,et al. Recovering Gene Interactions from Single-Cell Data Using Data Diffusion , 2018, Cell.
[14] Rodgers,et al. Density of states of a sparse random matrix. , 1988, Physical review. B, Condensed matter.
[15] Ambrose J. Carr,et al. Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment , 2018, Cell.
[16] William Stafford Noble,et al. Massively multiplex single-cell Hi-C , 2016, Nature Methods.
[17] Spectral density singularities, level statistics, and localization in a sparse random matrix ensemble. , 1992 .
[18] T. Tao,et al. Random covariance matrices: Universality of local statistics of eigenvalues , 2009, 0912.0966.
[19] I. Johnstone,et al. On Consistency and Sparsity for Principal Components Analysis in High Dimensions , 2009, Journal of the American Statistical Association.
[20] I. Johnstone. On the distribution of the largest eigenvalue in principal components analysis , 2001 .
[21] S. Dudoit,et al. A general and flexible method for signal extraction from single-cell RNA-seq data , 2018, Nature Communications.
[22] Mauro J. Muraro,et al. De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data , 2016, Cell stem cell.
[23] T. Tao,et al. Random Matrices: Universality of Local Eigenvalue Statistics up to the Edge , 2009, 0908.1982.
[24] Elena K. Kandror,et al. Single-cell topological RNA-Seq analysis reveals insights into cellular differentiation and development , 2017, Nature Biotechnology.
[25] P. Anderson. Absence of Diffusion in Certain Random Lattices , 1958 .
[26] Fyodorov,et al. Localization in ensemble of sparse random matrices. , 1991, Physical review letters.
[27] O. Bohigas,et al. Characterization of chaotic quantum spectra and universality of level fluctuation laws , 1984 .
[28] Andrew C. Adey,et al. Single-Cell Transcriptional Profiling of a Multicellular Organism , 2017 .
[29] P. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .
[30] S. Teichmann,et al. Computational and analytical challenges in single-cell transcriptomics , 2015, Nature Reviews Genetics.
[31] Spectral density singularities, level statistics, and localization in a sparse random matrix ensemble. , 1992, Physical review letters.
[32] Hannah A. Pliner,et al. The cis-regulatory dynamics of embryonic development at single cell resolution , 2017, Nature.
[33] Van H. Vu,et al. Sparse random graphs: Eigenvalues and eigenvectors , 2010, Random Struct. Algorithms.
[34] A. Oshlack,et al. Splatter: simulation of single-cell RNA sequencing data , 2017, Genome Biology.
[35] C. Donati-Martin,et al. The largest eigenvalues of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations. , 2007, 0706.0136.
[36] J. George,et al. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type–specific expression changes in type 2 diabetes , 2017, Genome research.
[37] Shawn M. Gillespie,et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.
[38] Jun Yin,et al. The local relaxation flow approach to universality of the local statistics for random matrices , 2009, 0911.3687.
[39] N. Hacohen,et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors , 2017, Science.
[40] Y. Fyodorov,et al. Universality of level correlation function of sparse random matrices , 1991 .
[41] S. Péché,et al. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.
[42] S. Linnarsson,et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.
[43] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[44] Wei Vivian Li,et al. An accurate and robust imputation method scImpute for single-cell RNA-seq data , 2018, Nature Communications.
[45] Nicola K. Wilson,et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. , 2016, Blood.
[46] A. Regev,et al. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis , 2018, Science.
[47] V. Plerou,et al. Random matrix approach to cross correlations in financial data. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[48] Robert J. Valenza,et al. Eigenvalues and Eigenvectors , 1993 .
[49] Yaron E. Antebi,et al. Dynamics of epigenetic regulation at the single-cell level , 2016, Science.
[50] E. Wigner. Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .
[51] V. Marčenko,et al. DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .
[52] F. Dyson. A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .
[53] H. Yau,et al. Bulk universality of sparse random matrices , 2015, 1504.05170.
[54] A. Regev,et al. Spatial reconstruction of single-cell gene expression data , 2015 .
[55] Kevin Schnelli,et al. Local law and Tracy–Widom limit for sparse random matrices , 2016, 1605.08767.
[56] A. Odlyzko. On the distribution of spacings between zeros of the zeta function , 1987 .
[57] Raj Rao Nadakuditi,et al. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices , 2009, 0910.2120.