A Reduced‐Order Successive Linear Estimator for Geostatistical Inversion and its Application in Hydraulic Tomography

National Natural Science Foundation of China [51779179, 51609173, 51479144, 51522904]; CRDF [DAA2-15-61224-1]; Tianjin Normal University from the Thousand Talents Plan of Tianjin City; Special Fund for Public Industry Research from Ministry of Land and Resources of China [201511047]

[1]  James J. Butler,et al.  Pumping tests in networks of multilevel sampling wells: Motivation and methodology , 1999 .

[2]  P. Kitanidis Persistent questions of heterogeneity, uncertainty, and scale in subsurface flow and transport , 2015 .

[3]  M. Anderson,et al.  Darcy Velocity Is Not a Velocity , 2016, Ground water.

[4]  T. Yeh,et al.  Validation of hydraulic tomography in an unconfined aquifer: A controlled sandbox study , 2015 .

[5]  Mary C. Hill,et al.  UCODE_2005 and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation constructed using the JUPITER API , 2006 .

[6]  P. Kitanidis,et al.  Principal Component Geostatistical Approach for large-dimensional inverse problems , 2014, Water resources research.

[7]  Peter K. Kitanidis,et al.  An interactive Bayesian geostatistical inverse protocol for hydraulic tomography , 2006 .

[8]  E. Sudicky,et al.  A view toward the future of subsurface characterization: CAT scanning groundwater basins , 2008 .

[9]  Peter K. Kitanidis,et al.  A field proof‐of‐concept of aquifer imaging using 3‐D transient hydraulic tomography with modular, temporarily‐emplaced equipment , 2012 .

[10]  Yonghong Hao,et al.  A temporal sampling strategy for hydraulic tomography analysis , 2013 .

[11]  T. Yeh,et al.  Hydraulic tomography: Development of a new aquifer test method , 2000 .

[12]  M. Cardiff,et al.  Aquifer imaging with pressure waves—Evaluation of low‐impact characterization through sandbox experiments , 2016 .

[13]  Mary F. Wheeler,et al.  An iterative stochastic ensemble method for parameter estimation of subsurface flow models , 2013, J. Comput. Phys..

[14]  Dongxiao Zhang,et al.  Conditional simulations of flow in randomly heterogeneous porous media using a KL-based moment-equation approach , 2004 .

[15]  M. Cardiff,et al.  Oscillatory hydraulic testing as a strategy for NAPL source zone monitoring: Laboratory experiments. , 2017, Journal of contaminant hydrology.

[16]  W. Nowak,et al.  A modified Levenberg-Marquardt algorithm for quasi-linear geostatistical inversing , 2004 .

[17]  Cheng-Haw Lee,et al.  River stage tomography: A new approach for characterizing groundwater basins , 2009 .

[18]  P. Kitanidis Quasi‐Linear Geostatistical Theory for Inversing , 1995 .

[19]  Y. Zha,et al.  An Application of Hydraulic Tomography to a Large‐Scale Fractured Granite Site, Mizunami, Japan , 2016, Ground water.

[20]  R. Srivastava,et al.  A three-dimensional numerical model for water flow and transport of chemically reactive solute through porous media under variably saturated conditions , 1992 .

[21]  Cheng-Haw Lee,et al.  Uniqueness, scale, and resolution issues in groundwater model parameter identification , 2015 .

[22]  Walter A. Illman,et al.  Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: Multi-method and multiscale validation of hydraulic conductivity tomograms , 2007 .

[23]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[24]  David L. Alumbaugh,et al.  A geostatistically based inverse model for electrical resistivity surveys and its applications to vadose zone hydrology , 2002 .

[25]  Wolfgang Nowak,et al.  Efficient Computation of Linearized Cross-Covariance and Auto-Covariance Matrices of Interdependent Quantities , 2003 .

[26]  P. Kitanidis,et al.  Fast iterative implementation of large‐scale nonlinear geostatistical inverse modeling , 2014 .

[27]  Hiromitsu Saegusa,et al.  Hydraulic tomography in fractured granite: Mizunami Underground Research site, Japan , 2009 .

[28]  Y. Zha,et al.  What does hydraulic tomography tell us about fractured geological media? A field study and synthetic experiments , 2015 .

[29]  T. Yeh,et al.  Cost-effective hydraulic tomography surveys for predicting flow and transport in heterogeneous aquifers. , 2009, Environmental science & technology.

[30]  Minghui Jin,et al.  AN ITERATIVE STOCHASTIC INVERSE METHOD: CONDITIONAL EFFECTIVE TRANSMISSIVITY AND HYDRAULIC HEAD FIELDS , 1995 .

[31]  Walter A Illman,et al.  Comparison of Approaches for Predicting Solute Transport: Sandbox Experiments , 2012, Ground water.

[32]  Peter K. Kitanidis,et al.  Large‐scale hydraulic tomography and joint inversion of head and tracer data using the Principal Component Geostatistical Approach (PCGA) , 2014 .

[33]  W. Illman,et al.  Should hydraulic tomography data be interpreted using geostatistical inverse modeling? A laboratory sandbox investigation , 2015 .

[34]  Jet-Chau Wen,et al.  A simultaneous successive linear estimator and a guide for hydraulic tomography analysis , 2009 .

[35]  Tian-Chyi J. Yeh,et al.  Incorporating geologic information into hydraulic tomography: A general framework based on geostatistical approach , 2017 .

[36]  W. Illman,et al.  Geostatistical reduced‐order models in underdetermined inverse problems , 2013 .

[37]  Allan L. Gutjahr,et al.  An Iterative Cokriging‐Like Technique for Ground‐Water Flow Modeling , 1995 .

[38]  Yuanyuan Zha,et al.  The relative importance of head, flux, and prior information in hydraulic tomography analysis , 2015 .

[39]  P. Kitanidis,et al.  Aquifer heterogeneity characterization with oscillatory pumping: Sensitivity analysis and imaging potential , 2013 .

[40]  Velimir V. Vesselinov,et al.  Large‐scale inverse model analyses employing fast randomized data reduction , 2017 .

[41]  Wei Li,et al.  Efficient geostatistical inverse methods for structured and unstructured grids , 2006 .

[42]  Peter Dietrich,et al.  Identification of the permeability distribution in soil by hydraulic tomography , 1995 .

[43]  Dongxiao Zhang,et al.  An efficient, high-order perturbation approach for flow in random porous media via Karhunen-Loève and polynomial expansions , 2004 .