Sparse Representation forComputerVision and Pattern Recognition A relatively small sample of computer vision and pattern recognition information in applications such as face recognition is often sufficient to reveal the meaning the user desires.

Techniques from sparse signal representation are beginning to see significant impact in computer vision, often on nontraditional applications where the goal is not just to obtain a compact high-fidelity representation of the observed signal, but also to extract semantic information. The choice of dictionary plays a key role in bridging this gap: unconventional dictionaries consisting of, or learned from, the training samples themselves provide the key to obtaining state-of-the-art results and to attaching semantic meaning to sparse signal represen- tations. Understanding the good performance of such uncon- ventional dictionaries in turn demands new algorithmic and analytical techniques. This review paper highlights a few

[1]  Jonathan J. Hull,et al.  A Database for Handwritten Text Recognition Research , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Michael E. Tipping Sparse Bayesian Learning and the Relevance Vector Machine , 2001, J. Mach. Learn. Res..

[3]  Hao Zhang,et al.  Expression-insensitive 3D face recognition using sparse representation , 2009, CVPR.

[4]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[6]  Shuicheng Yan,et al.  Semi-supervised Learning by Sparse Representation , 2009, SDM.

[7]  David L. Donoho,et al.  Neighborly Polytopes And Sparse Solution Of Underdetermined Linear Equations , 2005 .

[8]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[9]  E. Candes,et al.  11-magic : Recovery of sparse signals via convex programming , 2005 .

[10]  Subhransu Maji,et al.  Distributed compression and fusion of nonnegative sparse signals for multiple-view object recognition , 2009, 2009 12th International Conference on Information Fusion.

[11]  Alex Pentland,et al.  Face recognition using eigenfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Lawrence Carin,et al.  Sparse multinomial logistic regression: fast algorithms and generalization bounds , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..

[14]  René Vidal,et al.  Sparse subspace clustering , 2009, CVPR.

[15]  Volkan Cevher,et al.  Compressive Sensing for Background Subtraction , 2008, ECCV.

[16]  Xiaojin Zhu,et al.  --1 CONTENTS , 2006 .

[17]  René Vidal,et al.  Motion segmentation via robust subspace separation in the presence of outlying, incomplete, or corrupted trajectories , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Jean-Michel Morel,et al.  A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..

[19]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[20]  Rémi Gribonval,et al.  Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.

[21]  Allen Y. Yang,et al.  Distributed recognition of human actions using wearable motion sensor networks , 2009, J. Ambient Intell. Smart Environ..

[22]  Guillermo Sapiro,et al.  Learning to Sense Sparse Signals: Simultaneous Sensing Matrix and Sparsifying Dictionary Optimization , 2009, IEEE Transactions on Image Processing.

[23]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[24]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Guillermo Sapiro,et al.  Sparse representations for image classification: learning discriminative and reconstructive non-parametric dictionaries , 2008 .

[26]  Ronen Basri,et al.  Lambertian Reflectance and Linear Subspaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Guillermo Sapiro,et al.  Sparse Modeling with Universal Priors and Learned Incoherent Dictionaries(PREPRINT) , 2009 .

[28]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[29]  Guillermo Sapiro,et al.  Non-local sparse models for image restoration , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[30]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, CVPR.

[31]  Mark A Neifeld,et al.  Feature-specific structured imaging. , 2006, Applied optics.

[32]  Guillermo Sapiro,et al.  Supervised Dictionary Learning , 2008, NIPS.

[33]  Suyash P. Awate,et al.  Unsupervised, information-theoretic, adaptive image filtering for image restoration , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Stan Z. Li,et al.  Learning spatially localized, parts-based representation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[35]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[36]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[37]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[38]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[39]  Lei Zhang,et al.  Multi-label sparse coding for automatic image annotation , 2009, CVPR.

[40]  Michael Elad,et al.  Sparse Representation for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[41]  Guillermo Sapiro,et al.  Discriminative k-metrics , 2009, ICML '09.

[42]  Pierre Vandergheynst,et al.  Dictionary Preconditioning for Greedy Algorithms , 2008, IEEE Transactions on Signal Processing.

[43]  Rama Chellappa,et al.  Enforcing integrability by error correction using l1-minimization , 2009, CVPR.

[44]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[45]  Jongsun Kim,et al.  Effective representation using ICA for face recognition robust to local distortion and partial occlusion , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Stephen J. Wright,et al.  Computational Methods for Sparse Solution of Linear Inverse Problems , 2010, Proceedings of the IEEE.

[47]  Kjersti Engan,et al.  Frame based signal compression using method of optimal directions (MOD) , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[48]  Bernt Schiele,et al.  Analyzing appearance and contour based methods for object categorization , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[49]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[50]  B. Cranen,et al.  Noise robust digit recognition using sparse representations , 2008 .

[51]  Haibin Ling,et al.  Sparse representation of cast shadows via ℓ1-regularized least squares , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[52]  Michael Elad,et al.  Learning Multiscale Sparse Representations for Image and Video Restoration , 2007, Multiscale Model. Simul..

[53]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[54]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[55]  Rajat Raina,et al.  Self-taught learning: transfer learning from unlabeled data , 2007, ICML '07.

[56]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[57]  Mário A. T. Figueiredo Adaptive Sparseness Using Jeffreys Prior , 2001, NIPS.

[58]  Thomas S. Huang,et al.  Robust estimation of foreground in surveillance videos by sparse error estimation , 2008, 2008 19th International Conference on Pattern Recognition.

[59]  Trevor Darrell,et al.  Transfer learning for image classification with sparse prototype representations , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[60]  Shuicheng Yan,et al.  Graph Embedding and Extensions: A General Framework for Dimensionality Reduction , 2007 .

[61]  Bert Cranen,et al.  Using sparse representations for missing data imputation in noise robust speech recognition , 2008, 2008 16th European Signal Processing Conference.

[62]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[63]  Zihan Zhou,et al.  Towards a practical face recognition system: Robust registration and illumination by sparse representation , 2009, CVPR.

[64]  Mark A Neifeld,et al.  Adaptive feature-specific imaging: a face recognition example. , 2008, Applied optics.

[65]  Yaakov Tsaig,et al.  Fast Solution of $\ell _{1}$ -Norm Minimization Problems When the Solution May Be Sparse , 2008, IEEE Transactions on Information Theory.

[66]  Michael Elad,et al.  Compression of facial images using the K-SVD algorithm , 2008, J. Vis. Commun. Image Represent..

[67]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[68]  Jian-Feng Cai,et al.  Blind motion deblurring from a single image using sparse approximation , 2009, CVPR.

[69]  Hossein Mobahi,et al.  Face recognition with contiguous occlusion using markov random fields , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[70]  David J. Kriegman,et al.  Acquiring linear subspaces for face recognition under variable lighting , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[71]  Gabriel Peyré,et al.  Sparse Modeling of Textures , 2009, Journal of Mathematical Imaging and Vision.

[72]  Mark A Neifeld,et al.  Random projections based feature-specific structured imaging. , 2008, Optics express.

[73]  Baoxin Li,et al.  A compressive sensing approach for expression-invariant face recognition , 2009, CVPR.

[74]  Martial Hebert,et al.  Discriminative Sparse Image Models for Class-Specific Edge Detection and Image Interpretation , 2008, ECCV.

[75]  Karen O. Egiazarian,et al.  Color Image Denoising via Sparse 3D Collaborative Filtering with Grouping Constraint in Luminance-Chrominance Space , 2007, 2007 IEEE International Conference on Image Processing.

[76]  Michael Elad,et al.  Optimized Projections for Compressed Sensing , 2007, IEEE Transactions on Signal Processing.

[77]  I. Jolliffe Principal Component Analysis , 2002 .

[78]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[79]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[80]  Michael Elad,et al.  Automatic parameter setting for iterative shrinkage methods , 2008, 2008 IEEE 25th Convention of Electrical and Electronics Engineers in Israel.

[81]  Florian Steinke,et al.  Bayesian Inference and Optimal Design in the Sparse Linear Model , 2007, AISTATS.

[82]  Richard G. Baraniuk,et al.  A new compressive imaging camera architecture using optical-domain compression , 2006, Electronic Imaging.