Workflow Description to Dynamically Model β-Arrestin Signaling Networks.

Dynamic models of signaling networks allow the formulation of hypotheses on the topology and kinetic rate laws characterizing a given molecular network, in-depth exploration, and confrontation with kinetic biological data. Despite its standardization, dynamic modeling of signaling networks still requires successive technical steps that need to be carefully performed. Here, we detail these steps by going through the mathematical and statistical framework. We explain how it can be applied to the understanding of β-arrestin-dependent signaling networks. We illustrate our methodology through the modeling of β-arrestin recruitment kinetics at the follicle-stimulating hormone (FSH) receptor supported by in-house bioluminescence resonance energy transfer (BRET) data.

[1]  Grigorios A. Pavliotis,et al.  Multiscale Methods: Averaging and Homogenization , 2008 .

[2]  J. Bauer,et al.  Chemical reaction network theory for in-silico biologists , 2003 .

[3]  David Henriques,et al.  MEIGO: an open-source software suite based on metaheuristics for global optimization in systems biology and bioinformatics , 2013, BMC Bioinformatics.

[4]  T. Kenakin Quantifying biased β-arrestin signaling. , 2014, Handbook of experimental pharmacology.

[5]  M. Lohse,et al.  Spatial and Temporal Aspects of Signaling by G-Protein–Coupled Receptors , 2015, Molecular Pharmacology.

[6]  Julio R. Banga,et al.  Robust and efficient parameter estimation in dynamic models of biological systems , 2015, BMC Systems Biology.

[7]  R. Lefkowitz,et al.  β-Arrestins and Cell Signaling , 2007 .

[8]  Katsumi Inoue,et al.  Completing signaling networks by abductive reasoning with perturbation experiments , 2015, ILP.

[9]  Desmond J. Higham,et al.  Modeling and Simulating Chemical Reactions , 2008, SIAM Rev..

[10]  A. Poupon,et al.  β-arrestin signalling and bias in hormone-responsive GPCRs , 2017, Molecular and Cellular Endocrinology.

[11]  Ursula Klingmüller,et al.  Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood , 2009, Bioinform..

[12]  Yukiko Matsuoka,et al.  Using process diagrams for the graphical representation of biological networks , 2005, Nature Biotechnology.

[13]  Jan Hasenauer,et al.  Robust parameter estimation for dynamical systems from outlier‐corrupted data , 2017, Bioinform..

[14]  R. Jackson,et al.  General mass action kinetics , 1972 .

[15]  A. Poupon,et al.  Computational modeling approaches in gonadotropin signaling. , 2016, Theriogenology.

[16]  K. Eidne,et al.  Bioluminescence resonance energy transfer (BRET) for the real-time detection of protein-protein interactions , 2006, Nature Protocols.

[17]  Jens Timmer,et al.  Joining forces of Bayesian and frequentist methodology: a study for inference in the presence of non-identifiability , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  H. Othmer The Interaction of Structure and Dynamics in Chemical Reaction Networks , 1981 .

[19]  M. Caron,et al.  G Protein and β-Arrestin Signaling Bias at the Ghrelin Receptor* , 2014, The Journal of Biological Chemistry.

[20]  A. Poupon,et al.  Biased signalling in follicle stimulating hormone action , 2014, Molecular and Cellular Endocrinology.

[21]  Johan Karlsson,et al.  Comparison of approaches for parameter identifiability analysis of biological systems , 2014, Bioinform..

[22]  Kevin R. Sanft,et al.  Legitimacy of the stochastic Michaelis-Menten approximation. , 2011, IET systems biology.

[23]  A. Poupon,et al.  Computational Models to Decipher Cell-Signaling Pathways , 2014 .

[24]  Thomas Thorne,et al.  Model selection in systems and synthetic biology. , 2013, Current opinion in biotechnology.

[25]  T. Kenakin Principles: receptor theory in pharmacology. , 2004, Trends in pharmacological sciences.

[26]  Raghu Machiraju,et al.  Mathematical Methods for Modeling Chemical Reaction Networks , 2016 .

[27]  A. Poupon,et al.  Profiling of FSHR negative allosteric modulators on LH/CGR reveals biased antagonism with implications in steroidogenesis , 2016, Molecular and Cellular Endocrinology.

[28]  Fabian J. Theis,et al.  Data2Dynamics: a modeling environment tailored to parameter estimation in dynamical systems , 2015, Bioinform..

[29]  Mudita Singhal,et al.  Bioinformatics Original Paper Copasi—a Complex Pathway Simulator , 2022 .

[30]  F. Fages,et al.  Towards a systems biology approach of-G protein-coupled receptor signalling: challenges and expectations. , 2009, Comptes rendus biologies.

[31]  Anca Marginean,et al.  CoNtRol: an open source framework for the analysis of chemical reaction networks , 2014, Bioinform..

[32]  Thomas G. Kurtz,et al.  Stochastic Analysis of Biochemical Systems , 2015 .

[33]  P. Crépieux,et al.  GPCR signalling to the translation machinery. , 2010, Cellular signalling.

[34]  R. Yvinec,et al.  Human Luteinizing Hormone and Chorionic Gonadotropin Display Biased Agonism at the LH and LH/CG Receptors , 2017, Scientific Reports.

[35]  Martin H. Schaefer,et al.  A Comprehensive View of the β-Arrestinome , 2017, Front. Endocrinol..

[36]  A. Poupon,et al.  Assessing Gonadotropin Receptor Function by Resonance Energy Transfer-Based Assays , 2015, Front. Endocrinol..

[37]  Lan Ma,et al.  β-arrestin signaling and regulation of transcription , 2007, Journal of Cell Science.

[38]  Yuan Zhang,et al.  Functional Interaction between Angiotensin II Receptor Type 1 and Chemokine (C-C Motif) Receptor 2 with Implications for Chronic Kidney Disease , 2015, PloS one.

[39]  F. Horn Necessary and sufficient conditions for complex balancing in chemical kinetics , 1972 .

[40]  K. Defea,et al.  β‐arrestins and heterotrimeric G‐proteins: collaborators and competitors in signal transduction , 2008, British journal of pharmacology.

[41]  Antonis Papachristodoulou,et al.  Structural Identifiability of Dynamic Systems Biology Models , 2016, PLoS Comput. Biol..

[42]  Maria Pia Saccomani,et al.  Structural vs Practical Identifiability in System Biology , 2013, IWBBIO.

[43]  J. Banga,et al.  Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods , 2011, PloS one.

[44]  Mudita Singhal,et al.  COPASI - a COmplex PAthway SImulator , 2006, Bioinform..

[45]  Fabian J. Theis,et al.  Data-driven modelling of biological multi-scale processes , 2015, 1506.06392.

[46]  Eric Reiter,et al.  GRKs and β-arrestins: roles in receptor silencing, trafficking and signaling , 2006, Trends in Endocrinology & Metabolism.

[47]  P. Marin,et al.  Phosphorylation of β-arrestin2 at Thr383 by MEK underlies β-arrestin-dependent activation of Erk1/2 by GPCRs , 2017, eLife.

[48]  Dave Goulet,et al.  Modeling, Simulating, and Parameter Fitting of Biochemical Kinetic Experiments , 2015, SIAM Rev..

[49]  David Angeli,et al.  A tutorial on Chemical Reaction Networks dynamics , 2009, 2009 European Control Conference (ECC).

[50]  Fabian J Theis,et al.  Lessons Learned from Quantitative Dynamical Modeling in Systems Biology , 2013, PloS one.

[51]  D. Ritchie,et al.  Unraveling the molecular architecture of a G protein-coupled receptor/β-arrestin/Erk module complex , 2015, Scientific Reports.

[52]  M. Feinberg Complex balancing in general kinetic systems , 1972 .

[53]  Jennifer J Linderman,et al.  Modeling of G-protein-coupled Receptor Signaling Pathways* , 2009, Journal of Biological Chemistry.

[54]  R. Lefkowitz,et al.  Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors. , 2012, Annual review of pharmacology and toxicology.