Poly(triazine imide) with intercalation of lithium and chloride ions [(C3N3)2(NH(x)Li(1-x))3⋅LiCl]: a crystalline 2D carbon nitride network.

Poly(triazine imide) with intercalation of lithium and chloride ions (PTI/Li(+)Cl(-)) was synthesized by temperature-induced condensation of dicyandiamide in a eutectic mixture of lithium chloride and potassium chloride as solvent. By using this ionothermal approach the well-known problem of insufficient crystallinity of carbon nitride (CN) condensation products could be overcome. The structural characterization of PTI/Li(+)Cl(-) resulted from a complementary approach using spectroscopic methods as well as different diffraction techniques. Due to the high crystallinity of PTI/Li(+)Cl(-) a structure solution from both powder X-ray and electron diffraction patterns using direct methods was possible; this yielded a triazine-based structure model, in contrast to the proposed fully condensed heptazine-based structure that has been reported recently. Further information from solid-state NMR and FTIR spectroscopy as well as high-resolution TEM investigations was used for Rietveld refinement with a goodness-of-fit (χ(2)) of 5.035 and wRp=0.05937. PTI/Li(+)Cl(-) (P6(3)cm (no. 185); a=846.82(10), c=675.02(9) pm) is a 2D network composed of essentially planar layers made up from imide-bridged triazine units. Voids in these layers are stacked upon each other forming channels running parallel to [001], filled with Li(+) and Cl(-) ions. The presence of salt ions in the nanocrystallites as well as the existence of sp(2)-hybridized carbon and nitrogen atoms typical of graphitic structures was confirmed by electron energy-loss spectroscopy (EELS) measurements. Solid-state NMR spectroscopy investigations using (15)N-labeled PTI/Li(+)Cl(-) proved the absence of heptazine building blocks and NH(2) groups and corroborated the highly condensed, triazine-based structure model.

[1]  M. Antonietti,et al.  Photocurrent generation by polymeric carbon nitride solids: an initial step towards a novel photovoltaic system. , 2010, Chemistry, an Asian journal.

[2]  Kazuhiro Takanabe,et al.  Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. , 2010, Angewandte Chemie.

[3]  Horst Kisch,et al.  On the mechanism of urea-induced titania modification. , 2010, Chemistry.

[4]  W. Schnick,et al.  On the Formation and Decomposition of the Melonate Ion in Cyanate and Thiocyanate Melts and the Crystal Structure of Potassium Melonate, K3[C6N7(NCN)3] , 2009 .

[5]  J. Gracia,et al.  Corrugated layered heptazine-based carbon nitride: the lowest energy modifications of C3N4 ground state , 2009 .

[6]  W. Schnick,et al.  Structure elucidation of polyheptazine imide by electron diffraction--a templated 2D carbon nitride network. , 2009, Chemical communications.

[7]  M. Antonietti,et al.  Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. , 2009, Journal of the American Chemical Society.

[8]  M. Antonietti,et al.  Activation of carbon nitride solids by protonation: morphology changes, enhanced ionic conductivity, and photoconduction experiments. , 2009, Journal of the American Chemical Society.

[9]  H. Kisch,et al.  Zur Natur von Stickstoff‐modifiziertem Titandioxid für die Photokatalyse mit sichtbarem Licht , 2008 .

[10]  Horst Kisch,et al.  The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light. , 2008, Angewandte Chemie.

[11]  J. Senker,et al.  Structure elucidation of cyameluric acid by combining solid-state NMR spectroscopy, molecular modeling and direct-space methods , 2008 .

[12]  R. Schlögl,et al.  Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts , 2008 .

[13]  Markus Antonietti,et al.  Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. , 2008, Chemistry.

[14]  E. G. Gillan,et al.  From triazines to heptazines: deciphering the local structure of amorphous nitrogen-rich carbon nitride materials. , 2008, Journal of the American Chemical Society.

[15]  Gérard Demazeau,et al.  State of Art and recent trends in bulk carbon nitrides synthesis , 2008 .

[16]  J. Sehnert,et al.  Ab initio calculation of solid-state NMR spectra for different triazine and heptazine based structure proposals of g-C3N4. , 2007, The journal of physical chemistry. B.

[17]  M. Antonietti,et al.  Mesoporous graphitic carbon nitride as a versatile, metal-free catalyst for the cyclisation of functional nitriles and alkynes , 2007 .

[18]  W. Schnick,et al.  New light on an old story: formation of melam during thermal condensation of melamine. , 2007, Chemistry.

[19]  W. Schnick,et al.  Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations-structural characterization of a carbon nitride polymer. , 2007, Chemistry.

[20]  H. May Pyrolysis of melamine , 2007 .

[21]  M. Antonietti,et al.  Metal-free activation of CO2 by mesoporous graphitic carbon nitride. , 2007, Angewandte Chemie.

[22]  Arne Thomas,et al.  Metallfreie Aktivierung von CO2 mit mesoporösem graphitischem Kohlenstoffnitrid , 2007 .

[23]  P. Hoppe,et al.  High-pressure synthesis of crystalline carbon nitride imide, C2N2(NH). , 2007, Angewandte Chemie.

[24]  M. Antonietti,et al.  Metal-free catalysis of sustainable Friedel-Crafts reactions: direct activation of benzene by carbon nitrides to avoid the use of metal chlorides and halogenated compounds. , 2006, Chemical communications.

[25]  P. Moreau,et al.  Electron energy-loss spectra calculations and experiments as a tool for the identification of a lamellar C 3 N 4 compound , 2006 .

[26]  W. Schnick,et al.  From Triazines to Heptazines , 2006 .

[27]  W. Schnick,et al.  Synthesen, Kristallstrukturen und spektroskopische Eigenschaften des Melem‐Adduktes C6N7(NH2)3 · H3PO4 sowie der Melemium‐Salze (H2C6N7(NH2)3)SO4 · 2 H2O und (HC6N7(NH2)3)ClO4 · H2O , 2005 .

[28]  W. Schnick,et al.  Thermal Conversion of Guanylurea Dicyanamide into Graphitic Carbon Nitride via Prototype CNx Precursors , 2005 .

[29]  C. Cao,et al.  Synthesis of Carbon Nitride Nanotubes via a Catalytic-Assembly Solvothermal Route , 2004 .

[30]  E. Kroke,et al.  Novel group 14 nitrides , 2004 .

[31]  Yi Xie,et al.  Characterization of well-crystallized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures , 2003 .

[32]  P. G. Rasmussen,et al.  Computation of aromatic C3N4 networks and synthesis of the molecular precursor N(C3N3)3Cl6. , 2003, Chemistry.

[33]  W. Schnick,et al.  LixH12-x-y+z[P12OyN24-y]Clz--an oxonitridophosphate with a zeolitelike framework structure composed of 3-rings. , 2003, Angewandte Chemie.

[34]  W. Schnick,et al.  LixH12−x−y+z[P12OyN24−y]Clz – ein Oxonitridophosphat mit zeolithartiger Gerüststruktur aus Dreierringen , 2003 .

[35]  W. Schnick,et al.  Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies. , 2003, Journal of the American Chemical Society.

[36]  M. Terrones,et al.  Synthetic routes to nanoscale BxCyNz architectures , 2002 .

[37]  Chih-Ming Hsu,et al.  Forming silicon carbon nitride crystals and silicon carbon nitride nanotubes by microwave plasma-enhanced chemical vapor deposition , 2002 .

[38]  P. Kroll,et al.  Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structuresPart II: Alkalicyamelurates M3[C6N7O3], M = Li, Na, K, Rb, Cs, manuscript in preparation. , 2002 .

[39]  M. Bauer,et al.  High-Pressure Bulk Synthesis of Crystalline C6N9H3·HCl: A Novel C3N4 Graphitic Derivative , 2001 .

[40]  G. Demazeau,et al.  C3N4: Dream or reality? Solvothermal synthesis as macroscopic samples of the C3N4 graphitic form , 2000 .

[41]  W. Schnick Die ersten Nitrid-Spinelle – neue Synthesewege für binäre Nitride der 4. Hauptgruppe , 1999 .

[42]  Schnick The First Nitride Spinels-New Synthetic Approaches to Binary Group 14 Nitrides. , 1999, Angewandte Chemie.

[43]  S. Muhl,et al.  A review of the preparation of carbon nitride films , 1999 .

[44]  Maria Cristina Burla,et al.  EXPO: a program for full powder pattern decomposition and crystal structure solution , 1999 .

[45]  F. Weill,et al.  On a new model of the graphitic form of C3N4 , 1999 .

[46]  Maria Cristina Burla,et al.  SIR97: a new tool for crystal structure determination and refinement , 1999 .

[47]  Fernando Alvarez,et al.  Nitrogen substitution of carbon in graphite: Structure evolution toward molecular forms , 1998 .

[48]  M. Kawaguchi,et al.  Synthesis, structure, and characteristics of the new host material [(C3N3)2(NH)3]n , 1995 .

[49]  Ortega,et al.  Relative stability of hexagonal and planar structures of hypothetical C3N4 solids. , 1995, Physical review. B, Condensed matter.

[50]  Liu,et al.  Stability of carbon nitride solids. , 1994, Physical review. B, Condensed matter.

[51]  Sven Hovmöller,et al.  Quantitative electron diffraction : new features in the program system ELD , 1993 .

[52]  W. Schnick Festkörperchemie mit Nichtmetallnitriden , 1993 .

[53]  W. Schnick Solid-State Chemistry with Nonmetal Nitrides , 1993 .

[54]  S. Hovmöller,et al.  ELD : a computer program system for extracting intensities from electron diffraction patterns , 1993 .

[55]  Liu,et al.  Structural properties and electronic structure of low-compressibility materials: beta -Si3N4 and hypothetical beta -C3N4. , 1990, Physical review. B, Condensed matter.

[56]  A. Liu,et al.  Prediction of New Low Compressibility Solids , 1989, Science.

[57]  W. Sundermeyer,et al.  Darstellung von Carbonyl- und Fluorcarbonyl-pseudohalogeniden in der Salzschmelze , 1967 .

[58]  W. Sundermeyer,et al.  Chemische Reaktionen in Salzschmelzen, XIV. Über die Darstellung von Bis‐trimethylsilyl‐carbodiimid und Bis‐trimethylsilyl‐acetylen , 1967 .

[59]  W. Sundermeyer,et al.  Preparation of Carbonyl and Fluorocarbonyl Pseudohalides in Molten Salts , 1967 .

[60]  W. Sundermeyer Salzschmelzen und ihre Verwendung als Reaktionsmedien , 1965 .

[61]  W. Sundermeyer Fused Salts and Their Use as Reaction Media , 1965 .

[62]  A. I. Finkel'shtein,et al.  CHEMICAL PROPERTIES AND MOLECULAR STRUCTURE OF DERIVATIVES OF sym-HEPTAZINE [1,3,4,6,7,9,9b-HEPTAAZAPHENALENE, TRI-1,3,5-TRIAZINE] , 1964 .

[63]  H. J. Lucas,et al.  Some Derivatives of Cyameluric Acid and Probable Structures of Melam, Melem and Melon , 1940 .

[64]  L. Pauling,et al.  The Structure of Cyameluric Acid, Hydromelonic Acid and Related Substances. , 1937, Proceedings of the National Academy of Sciences of the United States of America.

[65]  E. C. Franklin THE AMMONO CARBONIC ACIDS , 1922 .

[66]  M. Antonietti,et al.  A metal-free polymeric photocatalyst for hydrogen production from water under visible light. , 2009, Nature materials.

[67]  C. Labrugère,et al.  Modulation of the crystallinity of hydrogenated nitrogen-rich graphitic carbon nitrides , 2009 .

[68]  T. Komatsu Prototype carbon nitrides similar to the symmetrictriangular form of melon , 2001 .

[69]  Michael Sung,et al.  Carbon nitride and other speculative superhard materials , 1996 .

[70]  W. Sundermeyer Chemische Reaktionen in Salzschmelzen. IV. Neue Darstellungsmethode von Cyaniden, Cyanaten und Thiocyanaten des Siliciums und Kohlenstoffs , 1962 .

[71]  M. Takimoto Studies on Separation and Determination of Chanamide Derivatives. IX. Separation of Melam and Melem, and Simpile Determination of them by the Photometric Method. , 1961 .

[72]  J. Liebig Uber einige Stickstoff ‐ Verbindungen , 1834 .