Ω-categorical Structures Avoiding Height 1 Identities

The algebraic dichotomy conjecture for Constraint Satisfaction Problems (CSPs) of reducts of (infinite) finitely bounded homogeneous structures states that such CSPs are polynomial-time tractable if the model-complete core of the template has a pseudo-Siggers polymorphism, and NP-complete otherwise. One of the important questions related to the dichotomy conjecture is whether, similarly to the case of finite structures, the condition of having a pseudo-Siggers polymorphism can be replaced by the condition of having polymorphisms satisfying a fixed set of identities of height 1, i.e., identities which do not contain any nesting of functional symbols. We provide a negative answer to this question by constructing for each non-trivial set of height 1 identities a structure within the range of the conjecture whose polymorphisms do not satisfy these identities, but whose CSP is tractable nevertheless. An equivalent formulation of the dichotomy conjecture characterizes tractability of the CSP via the local satisfaction of non-trivial height 1 identities by polymorphisms of the structure. We show that local satisfaction and global satisfaction of non-trivial height 1 identities differ for $\omega$-categorical structures with less than doubly exponential orbit growth, thereby resolving one of the main open problems in the algebraic theory of such structures.

[1]  HighWire Press,et al.  The bulletin of the London Mathematical Society , 1969 .

[2]  Manuel Bodirsky,et al.  A universal-algebraic proof of the complexity dichotomy for Monotone Monadic SNP , 2018, LICS.

[3]  Jakub Bulín,et al.  Algebraic approach to promise constraint satisfaction , 2018, STOC.

[4]  Libor Barto,et al.  Constraint Satisfaction Problems Solvable by Local Consistency Methods , 2014, JACM.

[5]  Manuel Bodirsky,et al.  Non-dichotomies in Constraint Satisfaction Complexity , 2008, ICALP.

[6]  Michael Pinsker,et al.  Topological Birkhoff , 2012, ArXiv.

[7]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[8]  Manuel Bodirsky,et al.  The complexity of temporal constraint satisfaction problems , 2010, JACM.

[9]  K. A. Baker,et al.  Polynomial interpolation and the Chinese Remainder Theorem for algebraic systems , 1975 .

[10]  Manuel Bodirsky,et al.  Complexity Classification in Infinite-Domain Constraint Satisfaction , 2012, ArXiv.

[11]  Yaroslav Shitov,et al.  Counterexamples to Hedetniemi's conjecture , 2019, Annals of Mathematics.

[12]  Jaroslav Nesetril,et al.  Constraint Satisfaction with Countable Homogeneous Templates , 2003, J. Log. Comput..

[13]  J. L. S. Luk Mémoire d'habilitation à diriger des recherches , 2000 .

[14]  D. Hobby,et al.  The structure of finite algebras , 1988 .

[15]  Dmitriy Zhuk,et al.  A Proof of CSP Dichotomy Conjecture , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[16]  Libor Barto,et al.  The wonderland of reflections , 2015, Israel Journal of Mathematics.

[18]  Jacques Stern,et al.  The Hardness of Approximate Optima in Lattices, Codes, and Systems of Linear Equations , 1997, J. Comput. Syst. Sci..

[19]  Peter Jonsson,et al.  The Complexity of Phylogeny Constraint Satisfaction Problems , 2015, ACM Trans. Comput. Log..

[20]  Libor Barto,et al.  The equivalence of two dichotomy conjectures for infinite domain constraint satisfaction problems , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[21]  Libor Barto,et al.  The algebraic dichotomy conjecture for infinite domain Constraint Satisfaction Problems , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[22]  Barnaby Martin,et al.  Constraint satisfaction problems for reducts of homogeneous graphs , 2016, ICALP.

[23]  Ieee Staff 2013 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS) , 2013 .

[24]  G. A. Miller,et al.  MATHEMATISCHE ZEITSCHRIFT. , 1920, Science.

[25]  Libor Barto,et al.  Polymorphisms, and How to Use Them , 2017, The Constraint Satisfaction Problem.

[26]  Andrei A. Bulatov,et al.  A Dichotomy Theorem for Nonuniform CSPs , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[27]  Manuel Bodirsky Cores of Countably Categorical Structures , 2007, Log. Methods Comput. Sci..

[28]  R. Fritsch,et al.  Journal of Pure and Applied Algebra the Core of a Ring Day, B., a Reflection Theorem for Closed Categories Rudolf Fritsch , 2011 .

[29]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[30]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[31]  Michael Pinsker,et al.  Schaefer's Theorem for Graphs , 2015, J. ACM.

[32]  Libor Barto,et al.  Topology is irrelevant (in a dichotomy conjecture for infinite domain constraint satisfaction problems) , 2020, SIAM J. Comput..

[33]  Miroslav Olvs'ak The weakest nontrivial idempotent equations , 2016, 1609.00531.

[34]  Michael Pinsker,et al.  Topology is relevant (in the infinite-domain dichotomy conjecture for constraint satisfaction problems) , 2019, ArXiv.

[35]  Elsevier Sdol,et al.  Advances in Applied Mathematics , 2009 .

[36]  Michael Kompatscher,et al.  On the Update Operation in Skew Lattices , 2018, FLAP.

[37]  S. Shelah,et al.  Universal Graphs with Forbidden Subgraphs and Algebraic Closure , 1998, math/9809202.

[38]  Michael Pinsker,et al.  PROJECTIVE CLONE HOMOMORPHISMS , 2014, The Journal of Symbolic Logic.

[39]  Peter Jonsson,et al.  A Model-Theoretic View on Qualitative Constraint Reasoning , 2017, J. Artif. Intell. Res..

[40]  Didier Clouteau,et al.  Mémoire d’habilitation á diriger des recherches , 2011 .

[41]  Some very weak identities , 1988 .

[42]  Wilfrid Hodges,et al.  A Shorter Model Theory , 1997 .

[43]  Norbert Sauer,et al.  The chromatic number of the product of two 4-chromatic graphs is 4 , 1985, Comb..

[44]  Jaroslav Nesetril,et al.  Homomorphism and Embedding Universal Structures for Restricted Classes , 2016, J. Multiple Valued Log. Soft Comput..

[45]  Takuya Kon-no,et al.  Transactions of the American Mathematical Society , 1996 .

[46]  M. Siggers A strong Mal’cev condition for locally finite varieties omitting the unary type , 2010 .

[47]  P. Cameron,et al.  Oligomorphic permutation groups , 1990 .

[48]  Libor Barto,et al.  Equations in oligomorphic clones and the Constraint Satisfaction Problem for $ω$-categorical structures , 2016, J. Math. Log..

[49]  B. Jonnson Algebras Whose Congruence Lattices are Distributive. , 1967 .