Ω-categorical Structures Avoiding Height 1 Identities
暂无分享,去创建一个
Michael Pinsker | Manuel Bodirsky | Antoine Mottet | Ross Willard | Jakub Opršal | Miroslav Olšák | R. Willard | M. Bodirsky | M. Pinsker | Jakub Opršal | M. Olsák | A. Mottet
[1] HighWire Press,et al. The bulletin of the London Mathematical Society , 1969 .
[2] Manuel Bodirsky,et al. A universal-algebraic proof of the complexity dichotomy for Monotone Monadic SNP , 2018, LICS.
[3] Jakub Bulín,et al. Algebraic approach to promise constraint satisfaction , 2018, STOC.
[4] Libor Barto,et al. Constraint Satisfaction Problems Solvable by Local Consistency Methods , 2014, JACM.
[5] Manuel Bodirsky,et al. Non-dichotomies in Constraint Satisfaction Complexity , 2008, ICALP.
[6] Michael Pinsker,et al. Topological Birkhoff , 2012, ArXiv.
[7] Peter Jeavons,et al. Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..
[8] Manuel Bodirsky,et al. The complexity of temporal constraint satisfaction problems , 2010, JACM.
[9] K. A. Baker,et al. Polynomial interpolation and the Chinese Remainder Theorem for algebraic systems , 1975 .
[10] Manuel Bodirsky,et al. Complexity Classification in Infinite-Domain Constraint Satisfaction , 2012, ArXiv.
[11] Yaroslav Shitov,et al. Counterexamples to Hedetniemi's conjecture , 2019, Annals of Mathematics.
[12] Jaroslav Nesetril,et al. Constraint Satisfaction with Countable Homogeneous Templates , 2003, J. Log. Comput..
[13] J. L. S. Luk. Mémoire d'habilitation à diriger des recherches , 2000 .
[14] D. Hobby,et al. The structure of finite algebras , 1988 .
[15] Dmitriy Zhuk,et al. A Proof of CSP Dichotomy Conjecture , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).
[16] Libor Barto,et al. The wonderland of reflections , 2015, Israel Journal of Mathematics.
[18] Jacques Stern,et al. The Hardness of Approximate Optima in Lattices, Codes, and Systems of Linear Equations , 1997, J. Comput. Syst. Sci..
[19] Peter Jonsson,et al. The Complexity of Phylogeny Constraint Satisfaction Problems , 2015, ACM Trans. Comput. Log..
[20] Libor Barto,et al. The equivalence of two dichotomy conjectures for infinite domain constraint satisfaction problems , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
[21] Libor Barto,et al. The algebraic dichotomy conjecture for infinite domain Constraint Satisfaction Problems , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
[22] Barnaby Martin,et al. Constraint satisfaction problems for reducts of homogeneous graphs , 2016, ICALP.
[23] Ieee Staff. 2013 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS) , 2013 .
[24] G. A. Miller,et al. MATHEMATISCHE ZEITSCHRIFT. , 1920, Science.
[25] Libor Barto,et al. Polymorphisms, and How to Use Them , 2017, The Constraint Satisfaction Problem.
[26] Andrei A. Bulatov,et al. A Dichotomy Theorem for Nonuniform CSPs , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).
[27] Manuel Bodirsky. Cores of Countably Categorical Structures , 2007, Log. Methods Comput. Sci..
[28] R. Fritsch,et al. Journal of Pure and Applied Algebra the Core of a Ring Day, B., a Reflection Theorem for Closed Categories Rudolf Fritsch , 2011 .
[29] Dan Suciu,et al. Journal of the ACM , 2006 .
[30] Tomás Feder,et al. The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..
[31] Michael Pinsker,et al. Schaefer's Theorem for Graphs , 2015, J. ACM.
[32] Libor Barto,et al. Topology is irrelevant (in a dichotomy conjecture for infinite domain constraint satisfaction problems) , 2020, SIAM J. Comput..
[33] Miroslav Olvs'ak. The weakest nontrivial idempotent equations , 2016, 1609.00531.
[34] Michael Pinsker,et al. Topology is relevant (in the infinite-domain dichotomy conjecture for constraint satisfaction problems) , 2019, ArXiv.
[35] Elsevier Sdol,et al. Advances in Applied Mathematics , 2009 .
[36] Michael Kompatscher,et al. On the Update Operation in Skew Lattices , 2018, FLAP.
[37] S. Shelah,et al. Universal Graphs with Forbidden Subgraphs and Algebraic Closure , 1998, math/9809202.
[38] Michael Pinsker,et al. PROJECTIVE CLONE HOMOMORPHISMS , 2014, The Journal of Symbolic Logic.
[39] Peter Jonsson,et al. A Model-Theoretic View on Qualitative Constraint Reasoning , 2017, J. Artif. Intell. Res..
[40] Didier Clouteau,et al. Mémoire d’habilitation á diriger des recherches , 2011 .
[41] Some very weak identities , 1988 .
[42] Wilfrid Hodges,et al. A Shorter Model Theory , 1997 .
[43] Norbert Sauer,et al. The chromatic number of the product of two 4-chromatic graphs is 4 , 1985, Comb..
[44] Jaroslav Nesetril,et al. Homomorphism and Embedding Universal Structures for Restricted Classes , 2016, J. Multiple Valued Log. Soft Comput..
[45] Takuya Kon-no,et al. Transactions of the American Mathematical Society , 1996 .
[46] M. Siggers. A strong Mal’cev condition for locally finite varieties omitting the unary type , 2010 .
[47] P. Cameron,et al. Oligomorphic permutation groups , 1990 .
[48] Libor Barto,et al. Equations in oligomorphic clones and the Constraint Satisfaction Problem for $ω$-categorical structures , 2016, J. Math. Log..
[49] B. Jonnson. Algebras Whose Congruence Lattices are Distributive. , 1967 .