Randomized multidimensional search trees: lazy balancing and dynamic shuffling

A randomized technique, called dynamic shuffling, is given for multidimensional dynamic search. This technique, when specialized to the problem of searching in sorted lists, yields the previously known randomized binary trees (treaps). The crux of the technique is a multidimensional generalization of the rotation operation on binary search trees. Simultaneously, it is shown how to dynamize the randomized incremental algorithms so as to allow additions as well as deletions of objects. The techniques are based on remembering the history of the actual or imaginary sequence of updates. The techniques are applied to several problems in computational geometry.<<ETX>>

[1]  Otfried Cheong Dynamic Maintenance of Geometric Structures Made Easy , 1991, FOCS.

[2]  Jon Louis Bentley,et al.  Decomposable Searching Problems I: Static-to-Dynamic Transformation , 1980, J. Algorithms.

[3]  Ketan Mulmuley,et al.  Randomized Multidimensional Search Trees: Dynamic Sampling (Extended Abstract) , 1991, SCG.

[4]  Jan van Leeuwen,et al.  Maintenance of Configurations in the Plane , 1981, J. Comput. Syst. Sci..

[5]  William Pugh,et al.  Skip lists: a probabilistic alternative to balanced trees , 1989, CACM.

[6]  Raimund Seidel,et al.  Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..

[7]  Ketan Mulmuley,et al.  Dynamic point location in arrangements of hyperplanes , 1991, SCG '91.

[8]  Bernard Chazelle,et al.  A deterministic view of random sampling and its use in geometry , 1990, Comb..

[9]  Ketan Mulmuley,et al.  An efficient algorithm for hidden surface removal , 1989, SIGGRAPH.

[10]  Ketan Mulmuley,et al.  A fast planar partition algorithm. I , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[11]  Cecilia R. Aragon,et al.  Randomized search trees , 1989, 30th Annual Symposium on Foundations of Computer Science.

[12]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[13]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[14]  Ketan Mulmuley Randomized multidimensional search trees (extended abstract): dynamic sampling , 1991, SCG '91.

[15]  Ketan Mulmuley,et al.  On levels in arrangements and voronoi diagrams , 1991, Discret. Comput. Geom..

[16]  Leonidas J. Guibas,et al.  A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1989, Discret. Comput. Geom..

[17]  Thomas W. Reps,et al.  Incremental evaluation for attribute grammars with application to syntax-directed editors , 1981, POPL '81.

[18]  Ketan Mulmuley Randomized multidimensional search trees: further results in dynamic sampling , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[19]  Ketan Mulmuley,et al.  Output sensitive construction of levels and Voronoi diagrams in Rd of order 1 to k , 1990, STOC '90.

[20]  Raimund Seidel,et al.  Linear programming and convex hulls made easy , 1990, SCG '90.

[21]  Kenneth L. Clarkson,et al.  New applications of random sampling in computational geometry , 1987, Discret. Comput. Geom..

[22]  Olivier Devillers,et al.  Fully Dynamic Delaunay Triangulation in Logarithmic Expected Time Per Operation , 1992, Comput. Geom..

[23]  Franz Aurenhammer,et al.  A simple on-line randomized incremental algorithm for computing higher order Voronoi diagrams , 1992, Int. J. Comput. Geom. Appl..

[24]  Paul F. Dietz,et al.  Two algorithms for maintaining order in a list , 1987, STOC.

[25]  Mark H. Overmars,et al.  The Design of Dynamic Data Structures , 1987, Lecture Notes in Computer Science.

[26]  D. T. Lee,et al.  On k-Nearest Neighbor Voronoi Diagrams in the Plane , 1982, IEEE Transactions on Computers.

[27]  Mariette Yvinec,et al.  Applications of random sampling to on-line algorithms in computational geometry , 1992, Discret. Comput. Geom..

[28]  William Pugh,et al.  Incremental computation via function caching , 1989, POPL '89.