Interval Type-2 fuzzy C-Means approach to collaborative clustering

There have been numerous studies on using the FCM algorithm in clustering and collaboration clustering, especially in data analysis, data mining and pattern recognition. In this study, we present new methods involving interval Type-2 fuzzy sets to realize collaborative clustering. Data in which the clustering results realized at one data site impact clustering carried out at other data sites. Those methods endowed with interval type-2 fuzzy sets help cope with uncertainties present in data. The experiment with weather data sets has shown better results in comparison with the previous approaches.

[1]  Krista Rizman Zalik,et al.  An efficient k 0-means clustering algorithm , 2008 .

[2]  Koen Vanhoof,et al.  Towards a Suitable Reconciliation of the Findings in Collaborative Fuzzy Clustering , 2008, 2008 Eighth International Conference on Intelligent Systems Design and Applications.

[3]  Witold Pedrycz,et al.  Collaborative clustering with the use of Fuzzy C-Means and its quantification , 2008, Fuzzy Sets Syst..

[4]  Jerry M. Mendel,et al.  Interval type-2 fuzzy logic systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[5]  Oscar Castillo,et al.  A review on type-2 fuzzy logic applications in clustering, classification and pattern recognition , 2014, Appl. Soft Comput..

[6]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[7]  Witold Pedrycz,et al.  Evolutionary fuzzy modeling , 2003, IEEE Trans. Fuzzy Syst..

[8]  Witold Pedrycz,et al.  Collaborative fuzzy clustering , 2002, Pattern Recognit. Lett..

[9]  Witold Pedrycz,et al.  Cluster-Centric Fuzzy Modeling , 2014, IEEE Transactions on Fuzzy Systems.

[10]  Witold Pedrycz,et al.  Collaborative Fuzzy Clustering Algorithms: Some Refinements and Design Guidelines , 2012, IEEE Transactions on Fuzzy Systems.

[11]  Oscar Castillo,et al.  Information granule formation via the concept of uncertainty-based information with Interval Type-2 Fuzzy Sets representation and Takagi-Sugeno-Kang consequents optimized with Cuckoo search , 2015, Appl. Soft Comput..

[12]  Fusheng Yu,et al.  A Necessary Preprocessing in Horizontal Collaborative Fuzzy Clustering , 2007, 2007 IEEE International Conference on Granular Computing (GRC 2007).

[13]  Long Thanh Ngo,et al.  GPU-based acceleration of interval type-2 fuzzy c-means clustering for satellite imagery land-cover classification , 2012, 2012 12th International Conference on Intelligent Systems Design and Applications (ISDA).

[14]  Witold Pedrycz,et al.  Towards hybrid clustering approach to data classification: Multiple kernels based interval-valued Fuzzy C-Means algorithms , 2015, Fuzzy Sets Syst..

[15]  Oscar Castillo,et al.  Designing Type-2 Fuzzy Systems Using the Interval Type-2 Fuzzy C-Means Algorithm , 2014, Recent Advances on Hybrid Approaches for Designing Intelligent Systems.

[16]  Jerry M. Mendel,et al.  Advances in type-2 fuzzy sets and systems , 2007, Inf. Sci..

[17]  Chin-Teng Lin,et al.  A preprocessed induced partition matrix based collaborative fuzzy clustering for data analysis , 2014, 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[18]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .

[19]  O. Castillo,et al.  Interval type-2 fuzzy clustering algorithm using the combination of the fuzzy and possibilistic C-Mean algorithms , 2014, 2014 IEEE Conference on Norbert Wiener in the 21st Century (21CW).

[20]  Fusheng Yu,et al.  Prototypes-Based Horizontal Collaborative Fuzzy Clustering , 2009, 2009 Second Pacific-Asia Conference on Web Mining and Web-based Application.

[21]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[22]  Feilong Liu,et al.  An efficient centroid type-reduction strategy for general type-2 fuzzy logic system , 2008, Inf. Sci..

[23]  K. alik An efficient k'-means clustering algorithm , 2008 .

[24]  Frank Chung-Hoon Rhee,et al.  Uncertain Fuzzy Clustering: Interval Type-2 Fuzzy Approach to $C$-Means , 2007, IEEE Transactions on Fuzzy Systems.

[25]  Witold Pedrycz,et al.  COLLABORATIVE AND KNOWLEDGE-BASED FUZZY CLUSTERING , 2007 .

[26]  Jerry M. Mendel,et al.  Type-2 fuzzy logic systems , 1999, IEEE Trans. Fuzzy Syst..

[27]  Witold Pedrycz,et al.  Rough–Fuzzy Collaborative Clustering , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[28]  D.M. Mount,et al.  An Efficient k-Means Clustering Algorithm: Analysis and Implementation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Pengjiang Qian,et al.  Collaborative Fuzzy Clustering From Multiple Weighted Views , 2015, IEEE Transactions on Cybernetics.

[30]  C. L. Philip Chen,et al.  A Collaborative Fuzzy Clustering Algorithm in Distributed Network Environments , 2014, IEEE Transactions on Fuzzy Systems.

[31]  Jerry M. Mendel,et al.  Centroid of a type-2 fuzzy set , 2001, Inf. Sci..

[32]  Fusheng Yu,et al.  Partially Horizontal Collaborative Fuzzy C-Means , 2007 .

[33]  Jerry M. Mendel,et al.  Interval Type-2 Fuzzy Logic Systems Made Simple , 2006, IEEE Transactions on Fuzzy Systems.