MW gyrotron development for fusion plasma applications

High power gyrotron oscillators are mainly used as millimetre wave sources for electron cyclotron resonance heating (ECRH), electron cyclotron current drive (ECCD), stability control and diagnostics of magnetically confined plasmas for energy generation by controlled thermonuclear fusion. The maximum pulse length of commercially available 1.0 MW gyrotrons, employing open-ended cylindrical resonators and chemical vapour deposition diamond output windows is 12 s at 140 GHz and 9 s at 170 GHz, with efficiencies slightly above 30%. The energy world record of 160 MJ at a power level around 0.9 MW is held by the European FZK-CRPP-CEA-TED collaboration. Total efficiencies of up to 50% have been obtained using a single-stage depressed collector (SDC). To achieve output powers of around 2 MW in continous wave operation at the ITER reference frequency 170 GHz, it is necessary to use a coaxial cavity geometry. A maximum output power of 2.2 MW at 165 GHz was obtained at FZK with an efficiency of 28% (48% in SDC operation). The availability of gyrotrons with fast frequency tunability would permit the use of a simple, fixed, non-steerable mirror antenna for local current drive experiments on ITER. This work reports on the progress in gyrotron development and the status of advanced coaxial cavity gyrotrons and step-wise frequency tunable gyrotrons.

[1]  M. Schmid,et al.  Progress in the development of the 170 GHz coaxial cavity gyrotron , 2004, Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004..

[2]  C. T. Iatrou,et al.  Coaxial cavities with corrugated inner conductor for gyrotrons , 1996 .

[3]  A. Chirkov,et al.  Mirror synthesis for gyrotron quasi-optical mode converters , 1995 .

[4]  B. G. Danly,et al.  Characteristics and applications of fast-wave gyrodevices , 1999, Proc. IEEE.

[5]  M. Thumm Free-electron masers vs. gyrotrons: prospects for high-power sources at millimeter and submillimeter wavelengths , 2002 .

[6]  Richard J. Temkin,et al.  Gyrotron internal mode converter reflector shaping from measured field intensity , 1999 .

[7]  Stefan Illy,et al.  A 2 MW, 170 GHz coaxial cavity gyrotron , 2003 .

[8]  G. Gantenbein,et al.  ECRH and ECCD with high power gyrotrons at the stellarators W7-AS and W7-X , 1999 .

[9]  G. Denisov,et al.  Development of 1 MW output power level gyrotrons for fusion systems , 2000, Abstracts. International Vacuum Electronics Conference 2000 (Cat. No.00EX392).

[10]  Yoshika Mitsunaka,et al.  High-Efficiency Oscillation of 170 GHz High-Power Gyrotron at TE31,8 Mode Using Depressed Collector , 2001 .

[11]  Manfred Thumm,et al.  Present developments and status of electron sources for high power gyrotron tubes and free electron masers , 1997 .

[12]  A. N. Kostyna,et al.  Development of 170 GHz gyrotron for ITER , 2002, Third IEEE International Vacuum Electronics Conference (IEEE Cat. No.02EX524).

[13]  T. S. Chu,et al.  Operation of a 500 kW, 84 GHz, long pulse gyrotron with collector potential depression , 2002, Twenty Seventh International Conference on Infrared and Millimeter Waves.

[14]  O. S. Lamba,et al.  Step-Frequency Operation of a Coaxial Cavity from 134 to 169.5 GHz , 2000 .

[15]  R. Heidinger,et al.  Characteristics of the light emission from CVD diamond windows , 2003 .

[16]  Stefan Illy,et al.  Coaxial cavity gyrotron with dual RF beam output , 1998 .

[17]  Steven H. Gold,et al.  Review of high-power microwave source research , 1997 .

[18]  Stefan Illy,et al.  A 2 MW, CW, 170 GHz Coaxial Cavity Gyrotron for ITER , 2003 .

[19]  Yoshika Mitsunaka,et al.  High power 170 GHz gyrotron with synthetic diamond window , 1999 .

[20]  M. Thumm,et al.  Power modulation capabilities of the 140 GHz/1 MW gyrotron for the stellarator Wendelstein 7-X , 2003 .

[21]  G. Gantenbein,et al.  Neoclassical tearing modes and their stabilization by electron cyclotron current drive in ASDEX Upgrade , 2001 .

[22]  M. Petelin One century of cyclotron radiation , 1999 .

[23]  G. Michel,et al.  Synthesis of YETI-Footprint-Mirrors with Low Stray Radiation , 2004 .

[24]  B. G. Danly,et al.  A quarter century of gyrotron research and development , 1997 .

[25]  V. Zapevalov,et al.  Advanced coaxial cavity gyrotrons , 2002, Twenty Seventh International Conference on Infrared and Millimeter Waves.

[26]  G. Gantenbein,et al.  Development of a 140 GHz, 1 MW, Continuous Wave Gyrotron for the W7-X Stellarator , 2001 .

[27]  Stefan Illy,et al.  European high-power CW gyrotron development for ECRH systems , 2001 .

[28]  Georg Kühner,et al.  Electron thermal conductivity from heat wave propagation in Wendelstein 7-AS , 1992 .

[29]  Manfred Thumm,et al.  Coaxial cavity gyrotron- recent experimental results , 2002 .

[30]  G. G. Denisov,et al.  110 GHz gyrotron with a built-in high-efficiency converter , 1992 .

[31]  T. Franke,et al.  Plans for a new ECRH system at ASDEX upgrade , 2003 .

[32]  M. Thumm,et al.  165 GHz, 1.5 MW-coaxial cavity gyrotron with depressed collector , 1999 .

[33]  M. Thumm,et al.  ITER R&D: Auxiliary Systems: Electron Cyclotron Heating and Current Drive System , 2001 .

[34]  Manfred Thumm,et al.  Fast frequency-step-tunable high-power gyrotron with hybrid-magnet-system , 2001 .

[35]  M. Thumm Advanced electron cyclotron heating systems for next-step fusion experiments , 1995 .

[36]  V. A. Flyagin,et al.  Cyclotron resonance masers: State of the art , 1996 .

[37]  Manfred Thumm,et al.  Frequency step-tunable (114–170 GHz) megawatt gyrotrons for plasma physics applications , 2001 .

[38]  Manfred Thumm,et al.  MPACVD-diamond windows for high-power and long-pulse millimeter wave transmission , 2001 .

[39]  M. Schmid,et al.  Development of a 140-GHz 1-MW continuous wave gyrotron for the W7-X stellarator , 2002 .

[40]  Yosuke Hirata,et al.  Wave-beam shaping using multiple phase-correction mirrors , 1997 .

[41]  A. Chirkov,et al.  Optimization of the frequency step tunable 105-170 GHz 1 MW gyrotron prototype , 2002, Twenty Seventh International Conference on Infrared and Millimeter Waves.

[42]  L. G. Popov,et al.  Development of 170 GHz/1 MW Russian gyrotron for ITER , 2001 .

[43]  Manfred Thumm,et al.  Step-frequency operation of a coaxial cavity gyrotron from 134 to 169.5 GHz , 2000 .

[44]  T. Imai,et al.  Development of 170 GHz and 110 GHz gyrotron for fusion application , 2002, Third IEEE International Vacuum Electronics Conference (IEEE Cat. No.02EX524).

[45]  B. Piosczyk,et al.  A novel 4.5-MW electron gun for a coaxial cavity gyrotron , 2001 .

[46]  T. C. Luce,et al.  Applications of high-power millimeter waves in fusion energy research , 2002 .