Low-temperature processed rare-earth doped brookite TiO2 scaffold for UV stable, hysteresis-free and high-performance perovskite solar cells

[1]  Yucheng Jiang,et al.  Fabricating an optimal rutile TiO2 electron transport layer by delicately tuning TiCl4 precursor solution for high performance perovskite solar cells , 2020 .

[2]  Hongwei Chen,et al.  Suppressing Vacancy Defects and Grain Boundaries via Ostwald Ripening for High‐Performance and Stable Perovskite Solar Cells , 2019, Advanced materials.

[3]  Jihuai Wu,et al.  High-Performance and Hysteresis-Free Perovskite Solar Cells Based on Rare-Earth-Doped SnO2 Mesoporous Scaffold , 2019, Research.

[4]  Liang Li,et al.  Coagulated SnO2 Colloids for High Performance Planar Perovskite Solar Cells with Negligible Hysteresis and Improved Stability. , 2019, Angewandte Chemie.

[5]  Jinsong Hu,et al.  A Rutile TiO2 Electron Transport Layer for the Enhancement of Charge Collection for Efficient Perovskite Solar Cells. , 2019, Angewandte Chemie.

[6]  Jihuai Wu,et al.  High performance perovskite solar cells based on β-NaYF4:Yb3+/Er3+/Sc3+@NaYF4 core-shell upconversion nanoparticles , 2019, Journal of Power Sources.

[7]  Abdullah M. Asiri,et al.  Stable perovskite solar cells using tin acetylacetonate based electron transporting layers , 2019, Energy & Environmental Science.

[8]  E. Fortunato,et al.  Photonic-structured TiO2 for high-efficiency, flexible and stable Perovskite solar cells , 2019, Nano Energy.

[9]  Jinsong Huang,et al.  Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells , 2019, Science Advances.

[10]  T. Miyasaka,et al.  Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. , 2019, Chemical reviews.

[11]  M. Kakihana,et al.  Low-Temperature-Processed Brookite-Based TiO2 Heterophase Junction Enhances Performance of Planar Perovskite Solar Cells. , 2018, Nano letters.

[12]  Dong‐Wan Kim,et al.  Oxygen-vacancy-modified brookite TiO2 nanorods as visible-light-responsive photocatalysts , 2018, Materials Letters.

[13]  Yanfa Yan,et al.  Reducing Saturation‐Current Density to Realize High‐Efficiency Low‐Bandgap Mixed Tin–Lead Halide Perovskite Solar Cells , 2018, Advanced Energy Materials.

[14]  Weijian Chen,et al.  Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module , 2018, Nature Communications.

[15]  Nakita K. Noel,et al.  Hysteresis Index: A Figure without Merit for Quantifying Hysteresis in Perovskite Solar Cells , 2018, ACS Energy Letters.

[16]  H. Snaith,et al.  Meso-Superstructured Perovskite Solar Cells: Revealing the Role of the Mesoporous Layer , 2018, The Journal of Physical Chemistry C.

[17]  Yue Zhang,et al.  Hydrophobic Polystyrene Passivation Layer for Simultaneously Improved Efficiency and Stability in Perovskite Solar Cells. , 2018, ACS applied materials & interfaces.

[18]  Abdullah M. Asiri,et al.  Influence of Charge Transport Layers on Open-Circuit Voltage and Hysteresis in Perovskite Solar Cells , 2018 .

[19]  G. Fang,et al.  Effective Carrier‐Concentration Tuning of SnO2 Quantum Dot Electron‐Selective Layers for High‐Performance Planar Perovskite Solar Cells , 2018, Advanced materials.

[20]  Danjie Liu,et al.  Molecular engineering of conjugated polymers for efficient hole transport and defect passivation in perovskite solar cells , 2018 .

[21]  Jihuai Wu,et al.  Cadmium sulfide as an efficient electron transport material for inverted planar perovskite solar cells. , 2018, Chemical communications.

[22]  Xin He,et al.  Annealing-Free Cr2 O3 Electron-Selective Layer for Efficient Hybrid Perovskite Solar Cells. , 2018, ChemSusChem.

[23]  Ullrich Steiner,et al.  A Ga-doped SnO2 mesoporous contact for UV stable highly efficient perovskite solar cells , 2018 .

[24]  M. Ikegami,et al.  Amorphous Metal Oxide Blocking Layers for Highly Efficient Low-Temperature Brookite TiO2-Based Perovskite Solar Cells. , 2018, ACS applied materials & interfaces.

[25]  Maksym V. Kovalenko,et al.  Properties and potential optoelectronic applications of lead halide perovskite nanocrystals , 2017, Science.

[26]  T. Buonassisi,et al.  Promises and challenges of perovskite solar cells , 2017, Science.

[27]  Jihuai Wu,et al.  Counter electrodes in dye-sensitized solar cells. , 2017, Chemical Society reviews.

[28]  A. Khoury,et al.  Urchin-inspired ZnO-TiO 2 core-shell as building blocks for dye sensitized solar cells , 2017 .

[29]  Jinsong Huang,et al.  Understanding the physical properties of hybrid perovskites for photovoltaic applications , 2017 .

[30]  Bo Chen,et al.  Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations , 2017, Nature Energy.

[31]  Chunhui Huang,et al.  A Breakthrough Efficiency of 19.9% Obtained in Inverted Perovskite Solar Cells by Using an Efficient Trap State Passivator Cu(thiourea)I. , 2017, Journal of the American Chemical Society.

[32]  Tzu‐Chien Wei,et al.  Efficient Plastic Perovskite Solar Cell with a Low‐Temperature Processable Electrodeposited TiO2 Compact Layer and a Brookite TiO2 Scaffold , 2017 .

[33]  Min Gyu Kim,et al.  Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells , 2017, Science.

[34]  Martin A. Green,et al.  Perovskite Solar Cells: The Birth of a New Era in Photovoltaics , 2017 .

[35]  L. Quan,et al.  SOLAR CELLS: Efficient and stable solution‐processed planar perovskite solar cells via contact passivation , 2017 .

[36]  Sandeep Kumar Pathak,et al.  ZrO2/TiO2 Electron Collection Layer for Efficient Meso-Superstructured Hybrid Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[37]  J. Ball,et al.  Defects in perovskite-halides and their effects in solar cells , 2016, Nature Energy.

[38]  Tsutomu Miyasaka,et al.  A SnOx-brookite TiO2 bilayer electron collector for hysteresis-less high efficiency plastic perovskite solar cells fabricated at low process temperature. , 2016, Chemical communications.

[39]  M. Grätzel,et al.  Enhanced Charge Collection with Passivation Layers in Perovskite Solar Cells , 2016, Advanced materials.

[40]  F. Jaramillo,et al.  Understanding the Role of the Mesoporous Layer in the Thermal Crystallization of a Meso-Superstructured Perovskite Solar Cell , 2016 .

[41]  H. Tao,et al.  Perovskite Solar Cells Based on Low-Temperature Processed Indium Oxide Electron Selective Layers. , 2016, ACS applied materials & interfaces.

[42]  Guojia Fang,et al.  Recent progress in electron transport layers for efficient perovskite solar cells , 2016 .

[43]  M. Johnston,et al.  Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies. , 2016, Accounts of chemical research.

[44]  A. Tiwari,et al.  Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications , 2015, Nature Communications.

[45]  Tsutomu Miyasaka,et al.  Brookite TiO2 as a low-temperature solution-processed mesoporous layer for hybrid perovskite solar cells , 2015 .

[46]  Dong Hoe Kim,et al.  Retarding charge recombination in perovskite solar cells using ultrathin MgO-coated TiO2 nanoparticulate films , 2015 .

[47]  Qingshun Dong,et al.  Low-Temperature and Solution-Processed Amorphous WO(x) as Electron-Selective Layer for Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[48]  Jiaguo Yu,et al.  New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. , 2014, Physical chemistry chemical physics : PCCP.

[49]  Mohammad Khaja Nazeeruddin,et al.  Organohalide lead perovskites for photovoltaic applications , 2014 .

[50]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[51]  Nam-Gyu Park,et al.  Rutile TiO2-based perovskite solar cells , 2014 .

[52]  Mohammad Khaja Nazeeruddin,et al.  Perovskite as light harvester: a game changer in photovoltaics. , 2014, Angewandte Chemie.

[53]  Francisco Fabregat-Santiago,et al.  Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[54]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[55]  L. Lazzarini,et al.  Efficiency Improvement of DSSC Photoanode by Scandium Doping of Mesoporous Titania Beads , 2013 .

[56]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[57]  Nam-Gyu Park,et al.  High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. , 2013, Nano letters.

[58]  Agatino Di Paola,et al.  Brookite, the Least Known TiO2 Photocatalyst , 2013 .

[59]  Juan Zhou,et al.  Controlled synthesis of monodisperse sub-100 nm hollow SnO2 nanospheres: a template- and surfactant-free solution-phase route, the growth mechanism, optical properties, and application as a photocatalyst. , 2011, Chemistry.

[60]  Tao Yu,et al.  Increasing the Oxygen Vacancy Density on the TiO2 Surface by La-Doping for Dye-Sensitized Solar Cells , 2010 .

[61]  Anders Hagfeldt,et al.  Dye-sensitized solar cells. , 2010, Chemical reviews.

[62]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[63]  M. Grätzel Dye-sensitized solar cells , 2003 .

[64]  Ching,et al.  Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. , 1995, Physical review. B, Condensed matter.

[65]  A. L. Patterson The Scherrer Formula for X-Ray Particle Size Determination , 1939 .

[66]  Wei Huang,et al.  Crystal face dependent charge carrier extraction in TiO2/perovskite heterojunctions , 2020 .