Interpreting Map Usage Patterns using Geovisual Analytics and Spatio-Temporal Clustering

Extracting meaningful information from the growing quantity of spatial data is a challenge. The issues are particularly evident with spatial temporal data describing movement. Such data typically corresponds to movement of humans, animals and machines in the physical environment. This article considers a special form of movement data generated through human-computer interactions with online web maps. As a user interacts with a web map using a mouse as a pointing tool, invisible trajectories are generated. By examining the spatial features on the map where the mouse cursor visits, a user’s interests and experience can be detected. To analyse this valuable information, we have developed a geovisual analysis tool which provides a rich insight into such user behaviour. The focus of this paper is on a clustering technique which we apply to mouse trajectories to group trajectories with similar behavioural properties. Our experiments reveal that it is possible to identify experienced and novice users of web mapping environments using an incremental clustering approach. The results can be used to provide personalised map interfaces to users and provide appropriate interventions for completing spatial tasks.

[1]  Xiaoru Yuan,et al.  Visual Traffic Jam Analysis Based on Trajectory Data , 2013, IEEE Transactions on Visualization and Computer Graphics.

[2]  Huadong Guo,et al.  Digital Earth 2020: towards the vision for the next decade , 2012, Int. J. Digit. Earth.

[3]  T. Hägerstrand What about people in Regional Science? , 1970 .

[4]  Menno-Jan Kraak,et al.  The space - time cube revisited from a geovisualization perspective , 2003 .

[5]  Arzu Çöltekin,et al.  Evaluating the Effectiveness of Interactive Map Interface Designs: A Case Study Integrating Usability Metrics with Eye-Movement Analysis , 2009 .

[6]  Kerry Rodden,et al.  Eye-mouse coordination patterns on web search results pages , 2008, CHI Extended Abstracts.

[7]  Gennady L. Andrienko,et al.  Spatio-temporal aggregation for visual analysis of movements , 2008, 2008 IEEE Symposium on Visual Analytics Science and Technology.

[8]  Thomas Devogele,et al.  Spatio-temporal trajectory analysis of mobile objects following the same itinerary , 2010 .

[9]  Ralf Hartmut Güting,et al.  Querying Moving Objects in SECONDO , 2006, 7th International Conference on Mobile Data Management (MDM'06).

[10]  Nikos Pelekis,et al.  Algorithms for Nearest Neighbor Search on Moving Object Trajectories , 2007, GeoInformatica.

[11]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[12]  Robert Weibel,et al.  Revealing the physics of movement: Comparing the similarity of movement characteristics of different types of moving objects , 2009, Comput. Environ. Urban Syst..

[13]  Hans-Peter Kriegel,et al.  Density‐based clustering , 2011, WIREs Data Mining Knowl. Discov..

[14]  Xia Li,et al.  Visual Exploration of Eye Movement Data Using the Space-Time-Cube , 2010, GIScience.

[15]  Gennady L. Andrienko,et al.  Visual analytics methods for categoric spatio-temporal data , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[16]  Donald C. Trost,et al.  Information mining over heterogeneous and high-dimensional time-series data in clinical trials databases , 2006, IEEE Transactions on Information Technology in Biomedicine.

[17]  Cláudio T. Silva,et al.  Visual Exploration of Big Spatio-Temporal Urban Data: A Study of New York City Taxi Trips , 2013, IEEE Transactions on Visualization and Computer Graphics.

[18]  Torsten Hägerstraand WHAT ABOUT PEOPLE IN REGIONAL SCIENCE , 1970 .

[19]  Anna L. Cox,et al.  The Role of Mouse Movements in Interactive Search , 2006 .

[20]  J. S. Dowker,et al.  Fundamentals of Physics , 1970, Nature.

[21]  Edward Y. Chang,et al.  Parallel Spectral Clustering in Distributed Systems , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Osama Masoud,et al.  Learning Traffic Patterns at Intersections by Spectral Clustering of Motion Trajectories , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  Hans-Jörg Schulz,et al.  The Great Wall of Space-Time , 2012, VMV.

[24]  Scott E. Hudson,et al.  Dynamic detection of novice vs. skilled use without a task model , 2007, CHI.

[25]  Daniel Weiskopf,et al.  Space-Time Visual Analytics of Eye-Tracking Data for Dynamic Stimuli , 2013, IEEE Transactions on Visualization and Computer Graphics.

[26]  Michael Burch,et al.  Visual Analytics Methodology for Eye Movement Studies , 2012, IEEE Transactions on Visualization and Computer Graphics.

[27]  Melanie Tory,et al.  Comparing ExoVis, Orientation Icon, and In-Place 3D Visualization Techniques , 2003, Graphics Interface.

[28]  Heidrun Schumann,et al.  Space, time and visual analytics , 2010, Int. J. Geogr. Inf. Sci..

[29]  Thad Starner,et al.  Using GPS to learn significant locations and predict movement across multiple users , 2003, Personal and Ubiquitous Computing.

[30]  David M. Mount,et al.  The analysis of a simple k-means clustering algorithm , 2000, SCG '00.

[31]  Andrea Lockerd Thomaz,et al.  Cheese: tracking mouse movement activity on websites, a tool for user modeling , 2001, CHI Extended Abstracts.

[32]  Michela Bertolotto,et al.  Implicit Profiling for Contextual Reasoning About Users' Spatial Preferences , 2007, CaCoA.

[33]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[34]  Menno-Jan Kraak,et al.  Geovisualization and time : new opportunities for the space - time cube , 2008 .

[35]  Ernesto Arroyo,et al.  Usability tool for analysis of web designs using mouse tracks , 2006, CHI Extended Abstracts.

[36]  Dino Pedreschi,et al.  Visually driven analysis of movement data by progressive clustering , 2008, Inf. Vis..

[37]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[38]  Stefan Wrobel,et al.  Visual analytics tools for analysis of movement data , 2007, SKDD.

[39]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[40]  Lei Chen,et al.  Robust and fast similarity search for moving object trajectories , 2005, SIGMOD '05.

[41]  Dimitrios Gunopulos,et al.  Discovering similar multidimensional trajectories , 2002, Proceedings 18th International Conference on Data Engineering.

[42]  Vania Bogorny,et al.  A clustering-based approach for discovering interesting places in trajectories , 2008, SAC '08.

[43]  Arzu Çöltekin,et al.  Exploring the efficiency of users' visual analytics strategies based on sequence analysis of eye movement recordings , 2010, Int. J. Geogr. Inf. Sci..

[44]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[45]  William Wright,et al.  GeoTime Information Visualization , 2004, IEEE Symposium on Information Visualization.

[46]  Dino Pedreschi,et al.  Interactive visual clustering of large collections of trajectories , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.