Singularities of plane rational curves via projections

We consider the parameterization ${\mathbf{f}}=(f_0,f_1,f_2)$ of a plane rational curve $C$ of degree $n$, and we want to study the singularities of $C$ via such parameterization. We do this by using the projection from the rational normal curve $C_n\subset \mathbb{P}^n$ to $C$ and its interplay with the secant varieties to $C_n$. In particular, we define via ${\mathbf{f}}$ certain 0-dimensional schemes $X_k\subset \mathbb{P}^k$, $2\leq k\leq (n-1)$, which encode all information on the singularities of multiplicity $\geq k$ of $C$ (e.g. using $X_2$ we can give a criterion to determine whether $C$ is a cuspidal curve or has only ordinary singularities). We give a series of algorithms which allow to get info about the singularities from such schemes.

[1]  J. Eagon,et al.  Ideals defined by matrices and a certain complex associated with them , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  Torgunn Karoline Moe Rational Cuspidal Curves , 2015, 1511.02691.

[3]  Falai Chen,et al.  The moving line ideal basis of planar rational curves , 1998, Comput. Aided Geom. Des..

[4]  A. Gimigliano,et al.  On plane rational curves and the splitting of the tangent bundle , 2011, 1102.1093.

[5]  A. Bernardi,et al.  On parameterizations of plane rational curves and their syzygies , 2015, 1507.02227.

[6]  Geometry of syzygies via Poncelet varieties , 2008, 0806.4881.

[7]  Ragni Piene,et al.  Cuspidal projections of space curves , 1981 .

[8]  M. Ascenzi The restricted tangent bundle of a rational curve in P2 , 1988 .

[9]  M. Beltrametti,et al.  Lectures on Curves, Surfaces and Projective Varieties , 2009 .

[10]  On a class of rational cuspidal plane curves , 1995, alg-geom/9507004.

[11]  S. Orevkov On rational cuspidal curves , 2002 .

[12]  Ron Goldman,et al.  Axial moving lines and singularities of rational planar curves , 2007, Comput. Aided Geom. Des..

[13]  Alessandra Bernardi,et al.  Computing symmetric rank for symmetric tensors , 2009, J. Symb. Comput..

[14]  A. Bernardi,et al.  A Note on plane rational curves and the associated Poncelet Surfaces , 2015 .

[15]  Sonia Pérez-Díaz Computation of the singularities of parametric plane curves , 2007, J. Symb. Comput..

[16]  Wenping Wang,et al.  Computing singular points of plane rational curves , 2008, J. Symb. Comput..

[17]  J. Rafael Sendra,et al.  Rational Algebraic Curves: A Computer Algebra Approach , 2007 .

[18]  Gert-Martin Greuel,et al.  Introduction to Singularities and Deformations , 2007 .

[19]  Noah S. Daleo,et al.  Tensor decomposition and homotopy continuation , 2015, 1512.04312.

[20]  Enumerating singular curves on surfaces , 1999, math/9903192.

[21]  Bernd Ulrich,et al.  A Study of Singularities on Rational Curves Via Syzygies , 2011, 1102.5072.