Identification of a novel family of carbohydrate-binding modules with broad ligand specificity

[1]  Yazhong Xiao,et al.  A starch‐binding domain identified in α‐amylase (AmyP) represents a new family of carbohydrate‐binding modules that contribute to enzymatic hydrolysis of soluble starch , 2014, FEBS letters.

[2]  Pedro M. Coutinho,et al.  The carbohydrate-active enzymes database (CAZy) in 2013 , 2013, Nucleic Acids Res..

[3]  H. Gilbert,et al.  Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate-binding modules. , 2013, Current opinion in structural biology.

[4]  H. Gilbert,et al.  Understanding How Noncatalytic Carbohydrate Binding Modules Can Display Specificity for Xyloglucan , 2012, The Journal of Biological Chemistry.

[5]  B. Henrissat,et al.  How nature can exploit nonspecific catalytic and carbohydrate binding modules to create enzymatic specificity , 2012, Proceedings of the National Academy of Sciences.

[6]  S. Rakshit,et al.  Isolation of a Gene Encoding a Cellulolytic Enzyme from Swamp Buffalo Rumen Metagenomes and Its Cloning and Expression in Escherichia Coli , 2012, Animal biotechnology.

[7]  N. Yennawar,et al.  Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin , 2012, Proceedings of the National Academy of Sciences.

[8]  T. Nechitaylo,et al.  Functional Metagenomics Unveils a Multifunctional Glycosyl Hydrolase from the Family 43 Catalysing the Breakdown of Plant Polymers in the Calf Rumen , 2012, PloS one.

[9]  Tanaporn Uengwetwanit,et al.  Identification and Characterization of a Cellulase-Encoding Gene from the Buffalo Rumen Metagenomic Library , 2012, Bioscience, biotechnology, and biochemistry.

[10]  Xiuzhu Dong,et al.  CBM3d, a Novel Subfamily of Family 3 Carbohydrate-Binding Modules Identified in Cel48A Exoglucanase of Cellulosilyticum ruminicola , 2011, Journal of bacteriology.

[11]  N. Nikolaidis,et al.  Structure-Function Analysis of the Bacterial Expansin EXLX1* , 2011, The Journal of Biological Chemistry.

[12]  B. Henrissat,et al.  A Novel, Noncatalytic Carbohydrate-binding Module Displays Specificity for Galactose-containing Polysaccharides through Calcium-mediated Oligomerization* , 2011, The Journal of Biological Chemistry.

[13]  M. Ferrer,et al.  Metagenomic era for biocatalyst identification. , 2010, Current opinion in biotechnology.

[14]  H. Gilbert,et al.  Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects , 2010, Proceedings of the National Academy of Sciences.

[15]  D. Nurizzo,et al.  Circular Permutation Provides an Evolutionary Link between Two Families of Calcium-dependent Carbohydrate Binding Modules* , 2010, The Journal of Biological Chemistry.

[16]  Cheng-Jie Duan,et al.  Novel Carbohydrate-Binding Module Identified in a Ruminal Metagenomic Endoglucanase , 2010, Applied and Environmental Microbiology.

[17]  R. Rodríguez-Sanoja,et al.  Carbohydrate-binding domains: multiplicity of biological roles , 2010, Applied Microbiology and Biotechnology.

[18]  W. Orts,et al.  Molecular cloning and characterization of multidomain xylanase from manure library , 2009 .

[19]  J.-X. Feng,et al.  Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens , 2009, Journal of applied microbiology.

[20]  Brandi L. Cantarel,et al.  The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics , 2008, Nucleic Acids Res..

[21]  Lushan Wang,et al.  A novel function for the cellulose binding module of cellobiohydrolase I , 2008, Science in China Series C: Life Sciences.

[22]  O. Shoseyov,et al.  Carbohydrate Binding Modules: Biochemical Properties and Novel Applications , 2006, Microbiology and Molecular Biology Reviews.

[23]  K. Timmis,et al.  Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. , 2005, Environmental microbiology.

[24]  A. Toyoda,et al.  Cloning, Sequencing, and Expression of a Eubacterium cellulosolvens 5 Gene Encoding an Endoglucanase (Cel5A) with Novel Carbohydrate-Binding Modules, and Properties of Cel5A , 2005, Applied and Environmental Microbiology.

[25]  H. Gilbert,et al.  Family 6 Carbohydrate Binding Modules Recognize the Non-reducing End of β-1,3-Linked Glucans by Presenting a Unique Ligand Binding Surface* , 2005, Journal of Biological Chemistry.

[26]  K. Sakka,et al.  Functions of Family-22 Carbohydrate-Binding Module in Clostridium thermocellum Xyn10C , 2005, Bioscience, biotechnology, and biochemistry.

[27]  D. Bolam,et al.  Carbohydrate-binding modules: fine-tuning polysaccharide recognition. , 2004, The Biochemical journal.

[28]  B. Henrissat,et al.  The Crystal Structure of the Family 6 Carbohydrate Binding Module from Cellvibrio mixtus Endoglucanase 5A in Complex with Oligosaccharides Reveals Two Distinct Binding Sites with Different Ligand Specificities* , 2004, Journal of Biological Chemistry.

[29]  B. Henrissat,et al.  The Family 6 Carbohydrate Binding Module CmCBM6-2 Contains Two Ligand-binding Sites with Distinct Specificities*[boxs] , 2004, Journal of Biological Chemistry.

[30]  J. Visser,et al.  Aspergillus Enzymes Involved in Degradation of Plant Cell Wall Polysaccharides , 2001, Microbiology and Molecular Biology Reviews.

[31]  N. Juge,et al.  Both binding sites of the starch-binding domain of Aspergillus niger glucoamylase are essential for inducing a conformational change in amylose. , 2001, Journal of molecular biology.

[32]  P. Bergquist,et al.  Identification of novel beta-mannan- and beta-glucan-binding modules: evidence for a superfamily of carbohydrate-binding modules. , 2001, The Biochemical journal.

[33]  P. Simpson,et al.  The Structural Basis for the Ligand Specificity of Family 2 Carbohydrate-binding Modules* , 2000, The Journal of Biological Chemistry.

[34]  D. Kilburn,et al.  C1-Cx revisited: intramolecular synergism in a cellulase. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[35]  M. A. Andrade,et al.  Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. , 1993, Protein engineering.

[36]  S. Ho,et al.  Site-directed mutagenesis by overlap extension using the polymerase chain reaction. , 1989, Gene.

[37]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[38]  Zengliang Yu,et al.  Truncation of the cellulose binding domain improved thermal stability of endo-beta-1,4-glucanase from Bacillus subtilis JA18. , 2009, Bioresource technology.

[39]  Y. Amano,et al.  Role of cellulose-binding domain of exocellulase I from white rot basidiomycete Irpex lacteus. , 2001, Journal of bioscience and bioengineering.

[40]  Guanjun Chen,et al.  Non-hydrolytic Disruption of Crystalline Structure of Cellulose by Cellulose Binding Domain and Linker Sequence of Cellobiohydrolase I from Penicillium janthinellum. , 2001, Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica.

[41]  E. Karlsson,et al.  Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase: cloning, expression and binding studies. , 2000, The Biochemical journal.

[42]  J. Aubert,et al.  The biological degradation of cellulose. , 1994, FEMS microbiology reviews.

[43]  P. Bergquist,et al.  Identification of novel b -mannan- and b -glucan-binding modules : evidence for a superfamily of carbohydrate-binding modules , 2022 .