A weighted view on the partial least-squares algorithm

In this paper it is shown that the Partial Least-Squares (PLS) algorithm for univariate data is equivalent to using a truncated Cayley-Hamilton polynomial expression of degree [email protected][email protected]?r for the matrix inverse (X^TX)^-^[email protected]?R^r^x^r which is used to compute the least-squares (LS) solution. Furthermore, the a coefficients in this polynomial are computed as the optimal LS solution (minimizing parameters) to the prediction error. The resulting solution is non-iterative. The solution can be expressed in terms of a matrix inverse and is given by B"P"L"S=K"a(K"a^TX^TXK"a)^-^1K"a^TX^TY where K"[email protected]?R^r^x^a is the controllability (Krylov) matrix for the pair (X^TX,X^TY). The iterative PLS algorithm for computing the orthogonal weighting matrix W"a as presented in the literature, is shown here to be equivalent to computing an orthonormal basis (using, e.g. the QR algorithm) for the column space of K"a. The PLS solution can equivalently be computed as B"P"L"S=W"a(W"a^TX^TXW"a)^-^1W"a^TX^TY, where W"a is the Q (orthogonal) matrix from the QR decomposition K"a=W"aR. Furthermore, we have presented an optimal and non-iterative truncated Cayley-Hamilton polynomial LS solution for multivariate data. The free parameters in this solution is found as the minimizing solution of a prediction error criterion.

[1]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[2]  J. Friedman,et al.  A Statistical View of Some Chemometrics Regression Tools , 1993 .

[3]  D. Di Ruscio On subspace identification of the extended observability matrix , 1997 .

[4]  学 加納,et al.  Partial Least Squares Regression を用いた蒸留塔製品組成の推定制御 , 1998 .

[5]  W. Vetter Matrix Calculus Operations and Taylor Expansions , 1973 .

[6]  C. Braak,et al.  Comments on the PLS kernel algorithm , 1994 .

[7]  Gene H. Golub,et al.  Matrix computations , 1983 .

[8]  S. Wold,et al.  The kernel algorithm for PLS , 1993 .

[9]  L. E. Wangen,et al.  A theoretical foundation for the PLS algorithm , 1987 .

[10]  Tor Arne Johansen,et al.  On Tikhonov regularization, bias and variance in nonlinear system identification , 1997, Autom..

[11]  Aloke Phatak,et al.  Partial least squares regression , 1997 .

[12]  J. Friedman,et al.  [A Statistical View of Some Chemometrics Regression Tools]: Response , 1993 .

[13]  A. Höskuldsson PLS regression methods , 1988 .

[14]  M. Saunders,et al.  A Bidiagonalization Algorithm for Sparse Linear Equations and Least-Squares Problems. , 1978 .

[15]  Gene H. Golub,et al.  Regularization by Truncated Total Least Squares , 1997, SIAM J. Sci. Comput..

[16]  Sabine Van Huffel,et al.  10 The total least squares problem , 1993, Computational Statistics.

[17]  S. Wold,et al.  The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses , 1984 .

[18]  Agnar Höskuldsson,et al.  Prediction Methods in Science and Technology.: Vol 1. Basic theory , 1996 .

[19]  Sijmen de Jong,et al.  The objective function of partial least squares regression , 1998 .

[20]  I. Helland ON THE STRUCTURE OF PARTIAL LEAST SQUARES REGRESSION , 1988 .

[21]  Alison J. Burnham,et al.  Frameworks for latent variable multivariate regression , 1996 .

[22]  A. Phatak,et al.  The geometry of partial least squares , 1997 .

[23]  Tormod Næs,et al.  Comparison of prediction methods for multicollinear data , 1985 .

[24]  Bart De Moor,et al.  Total linear least squares and the algebraic Riccati equation , 1992 .

[25]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[26]  S. D. Jong SIMPLS: an alternative approach to partial least squares regression , 1993 .

[27]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[28]  R. Manne Analysis of two partial-least-squares algorithms for multivariate calibration , 1987 .

[29]  H. Wold Soft Modelling by Latent Variables: The Non-Linear Iterative Partial Least Squares (NIPALS) Approach , 1975, Journal of Applied Probability.

[30]  Sabine Van Huffel,et al.  Total least squares problem - computational aspects and analysis , 1991, Frontiers in applied mathematics.