Compound Poisson Processes: Potentials, Green Measures and Random Times

In this paper we study the existence of Green measures for Markov processes with a nonlocal jump generator. The jump generator has no second moment and satisfies a suitable condition on its Fourier transform. We also study the same problem for certain classes of random time changes Markov processes with jump generator.

[1]  Y. Kondratiev,et al.  Random potentials for Markov processes , 2020, Applicable Analysis.

[2]  Liguang Liu,et al.  Hardy's inequality and Green function on metric measure spaces , 2021 .

[3]  Green Measures for Time Changed Markov Processes , 2020, 2008.03390.

[4]  A. Kochubei General fractional calculus , 2019, Basic Theory.

[5]  A. Kochubei,et al.  Random Time Change and Related Evolution Equations , 2019, 1901.10015.

[6]  S. Ana,et al.  Topology , 2018, International Journal of Mathematics Trends and Technology.

[7]  M. Manhart,et al.  Markov Processes , 2018, Introduction to Stochastic Processes and Simulation.

[8]  Jiaxin Hu,et al.  Two-sided estimates of heat kernels of jump type Dirichlet forms , 2018 .

[9]  Andrey L. Piatnitski,et al.  Resolvent bounds for jump generators , 2018 .

[10]  Pointwise estimates for heat kernels of convolution‐type operators , 2017, 1707.06709.

[11]  B. Vainberg,et al.  Spectral analysis of non-local Schrödinger operators , 2016, 1603.01626.

[12]  Bruno Toaldo Convolution-Type Derivatives, Hitting-Times of Subordinators and Time-Changed C0-semigroups , 2013, 1308.1327.

[13]  Jiaxin Hu,et al.  Heat Kernels and Green Functions on Metric Measure Spaces , 2014, Canadian Journal of Mathematics.

[14]  M. Magdziarz,et al.  Asymptotic properties of Brownian motion delayed by inverse subordinators , 2013, 1311.6043.

[15]  Anatoly N. Kochubei,et al.  General Fractional Calculus, Evolution Equations, and Renewal Processes , 2011, 1105.1239.

[16]  Murad S. Taqqu,et al.  Non-Markovian diffusion equations and processes: Analysis and simulations , 2007, 0712.0240.

[17]  J. Doob,et al.  Markov Processes and Potential Theory , 2007 .

[18]  R. Wolpert Lévy Processes , 2000 .

[19]  A. Borodin,et al.  Handbook of Brownian Motion - Facts and Formulae , 1996 .

[20]  L. Takács On the Local Time of the Brownian Motion , 1995 .

[21]  L. Takács,et al.  Brownian local times , 1995 .

[22]  A. Skorokhod Random processes with independent increments , 1991 .

[23]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[24]  A. Borodin Distribution of integral functionals of a Brownian motion process , 1984 .

[25]  P. A. Meyer,et al.  Processus de Markov , 1967 .