Low- or high-white light irradiance induces similar conidial stress tolerance in Metarhizium robertsii

[1]  C. Keyser,et al.  Virulence of the insect-pathogenic fungi Metarhizium spp. to Mormon crickets, Anabrus simplex (Orthoptera: Tettigoniidae) , 2021, Bulletin of Entomological Research.

[2]  D. Rangel,et al.  Conidiation under illumination enhances conidial tolerance of insect-pathogenic fungi to environmental stresses. , 2021, Fungal biology.

[3]  D. Rangel,et al.  Different wavelengths of visible light influence the conidial production and tolerance to ultra-violet radiation of the plant pathogens Colletotrichum acutatum and Fusarium fujikuroi , 2020 .

[4]  D. Rangel,et al.  Laboratory and field studies for the control of Chagas disease vectors using the fungus Metarhizium anisopliae. , 2020, Archives of insect biochemistry and physiology.

[5]  J. E. Hallsworth,et al.  Osmotolerance as a determinant of microbial ecology: A study of phylogenetically diverse fungi. , 2020, Fungal biology.

[6]  L. Corrochano,et al.  Outcome of blue, green, red, and white light on Metarhizium robertsii during mycelial growth on conidial stress tolerance and gene expression. , 2020, Fungal biology.

[7]  D. Rangel,et al.  Serendipity in the wrestle between Trichoderma and Metarhizium. , 2020, Fungal biology.

[8]  D. E. Levin,et al.  The Third International Symposium on Fungal Stress - ISFUS. , 2017, Fungal biology.

[9]  D. Rangel,et al.  Combining Transcriptomics and Proteomics Reveals Potential Post-transcriptional Control of Gene Expression After Light Exposure in Metarhizium acridum , 2019, G3: Genes, Genomes, Genetics.

[10]  D. Rangel,et al.  The Xenon Test Chamber Q-SUN® for testing realistic tolerances of fungi exposed to simulated full spectrum solar radiation. , 2018, Fungal biology.

[11]  G. Braus,et al.  The second International Symposium on Fungal Stress: ISFUS. , 2018, Fungal biology.

[12]  D. Rangel,et al.  Metarhizium robertsii illuminated during mycelial growth produces conidia with increased germination speed and virulence. , 2017, Fungal biology.

[13]  J. Dunlap,et al.  Making Time: Conservation of Biological Clocks from Fungi to Animals , 2017, Microbiology spectrum.

[14]  D. Rangel,et al.  Exposure of Metarhizium acridum mycelium to light induces tolerance to UV-B radiation. , 2016, FEMS microbiology letters.

[15]  J. Dunlap,et al.  Fungal Light Sensing at the Bench and Beyond. , 2016, Advances in genetics.

[16]  J. Dunlap,et al.  Biological Significance of Photoreceptor Photocycle Length: VIVID Photocycle Governs the Dynamic VIVID-White Collar Complex Pool Mediating Photo-adaptation and Response to Changes in Light Intensity , 2015, PLoS genetics.

[17]  J. E. Hallsworth,et al.  Stress tolerance and virulence of insect-pathogenic fungi are determined by environmental conditions during conidial formation , 2015, Current Genetics.

[18]  D. Rangel,et al.  Responsiveness of entomopathogenic fungi to menadione-induced oxidative stress. , 2014, Fungal biology.

[19]  C. Baker,et al.  Pre-illumination of rice blast conidia induces tolerance to subsequent oxidative stress. , 2014, Fungal biology.

[20]  A. Lobo,et al.  Conidial water affinity is an important characteristic for thermotolerance in entomopathogenic fungi , 2014 .

[21]  A. Idnurm,et al.  The Uve1 Endonuclease Is Regulated by the White Collar Complex to Protect Cryptococcus neoformans from UV Damage , 2013, PLoS genetics.

[22]  J. Dunlap,et al.  The Fungal Pathogen Aspergillus fumigatus Regulates Growth, Metabolism, and Stress Resistance in Response to Light , 2013, mBio.

[23]  R. Fischer,et al.  Light inhibits spore germination through phytochrome in Aspergillus nidulans , 2013, Current Genetics.

[24]  A. Anderson,et al.  Culture of Metarhizium robertsii on salicylic-acid supplemented medium induces increased conidial thermotolerance. , 2012, Fungal biology.

[25]  Daniel Furtado Ferreira,et al.  Sisvar: a computer statistical analysis system , 2011 .

[26]  É. Fernandes,et al.  Visible light during mycelial growth and conidiation of Metarhizium robertsii produces conidia with increased stress tolerance. , 2011, FEMS microbiology letters.

[27]  R. B. Lopes,et al.  Biological control of insects in Brazil and China: history, current programs and reasons for their successes using entomopathogenic fungi , 2010 .

[28]  M. Schmoll,et al.  Light regulation of metabolic pathways in fungi , 2009, Applied Microbiology and Biotechnology.

[29]  S. Crosson,et al.  The Photobiology of Microbial Pathogenesis , 2009, PLoS pathogens.

[30]  J. Heitman,et al.  Phycomyces MADB interacts with MADA to form the primary photoreceptor complex for fungal phototropism , 2009, Proceedings of the National Academy of Sciences.

[31]  Y. Pei,et al.  Light stimulates conidiation of the entomopathogenic fungus Beauveria bassiana , 2009 .

[32]  D. Rangel,et al.  Effects of physical and nutritional stress conditions during mycelial growth on conidial germination speed, adhesion to host cuticle, and virulence of Metarhizium anisopliae, an entomopathogenic fungus. , 2008, Mycological research.

[33]  A. Anderson,et al.  Evaluating physical and nutritional stress during mycelial growth as inducers of tolerance to heat and UV-B radiation in Metarhizium anisopliae conidia. , 2008, Mycological research.

[34]  D. J. Davis,et al.  The Fastest Flights in Nature: High-Speed Spore Discharge Mechanisms among Fungi , 2008, PloS one.

[35]  A. Anderson,et al.  Growth of Metarhizium anisopliae on non-preferred carbon sources yields conidia with increased UV-B tolerance. , 2006, Journal of invertebrate pathology.

[36]  Kwangwon Lee,et al.  Light regulation of asexual development in the rice blast fungus, Magnaporthe oryzae. , 2006, Fungal genetics and biology : FG & B.

[37]  M. Schmoll,et al.  Envoy, a PAS/LOV Domain Protein of Hypocrea jecorina (Anamorph Trichoderma reesei), Modulates Cellulase Gene Transcription in Response to Light , 2005, Eukaryotic Cell.

[38]  L. Lacey,et al.  Evaluation of novel fungal and nematode isolates for control of Conotrachelus nenuphar (Coleoptera: Curculionidae) larvae , 2005 .

[39]  J. Heitman,et al.  Light Controls Growth and Development via a Conserved Pathway in the Fungal Kingdom , 2005, PLoS biology.

[40]  A. Anderson,et al.  Variability in conidial thermotolerance of Metarhizium anisopliae isolates from different geographic origins. , 2005, Journal of invertebrate pathology.

[41]  A. Herrera-Estrella,et al.  Light-regulated asexual reproduction in Paecilomyces fumosoroseus. , 2004, Microbiology.

[42]  L. Corrochano,et al.  Photomorphogenesis inPhycomyces: Dependence on environmental conditions , 1988, Planta.

[43]  C. D. Miller,et al.  Damage and recovery from UV-B exposure in conidia of the entomopathogens Verticillium lecanii and Aphanocladium album , 2002, Mycologia.

[44]  L. Corrochano,et al.  Photomorphogenesis in Phycomyces: Competence period and stimulus-response relationships , 1990 .

[45]  M. Tansey,et al.  Moonlight, mushrooms and moulds. , 1975, Journal of theoretical biology.

[46]  M. Delbrück,et al.  Phycomyces , 1969, Bacteriological reviews.

[47]  H. L. Sweetman The Biological Control of Insects , 1943, Nature.