c-Myc inactivation of p53 through the pan-cancer lncRNA MILIP drives cancer pathogenesis

[1]  Xu Dong Zhang,et al.  SENEBLOC, a long non-coding RNA suppresses senescence via p53-dependent and independent mechanisms , 2020, Nucleic acids research.

[2]  R. Scott,et al.  LncRNA REG1CP promotes tumorigenesis through an enhancer complex to recruit FANCJ helicase for REG3A transcription , 2019, Nature Communications.

[3]  O. Tokgun,et al.  MYC-driven regulation of long non-coding RNA profiles in breast cancer cells. , 2019, Gene.

[4]  Junnian Zheng,et al.  Emerging Roles of p53 Related lncRNAs in Cancer Progression: A Systematic Review , 2019, International journal of biological sciences.

[5]  V. Serra,et al.  Direct CDKN2 Modulation of CDK4 Alters Target Engagement of CDK4 Inhibitor Drugs , 2019, Molecular Cancer Therapeutics.

[6]  S. Guo,et al.  Dual functions for OVAAL in initiation of RAF/MEK/ERK prosurvival signals and evasion of p27-mediated cellular senescence , 2018, Proceedings of the National Academy of Sciences.

[7]  National Health and Medical Research Council (NHMRC) , 2018, The Grants Register 2022.

[8]  S. Guo,et al.  A p53-Responsive miRNA Network Promotes Cancer Cell Quiescence. , 2018, Cancer research.

[9]  Lei Jin,et al.  GUARDIN is a p53-responsive long non-coding RNA that is essential for genomic stability , 2018, Nature Cell Biology.

[10]  Lei Jin,et al.  LncRNA IDH1-AS1 links the functions of c-Myc and HIF1α via IDH1 to regulate the Warburg effect , 2018, Proceedings of the National Academy of Sciences.

[11]  Xu Guang Yan,et al.  Skp2-Mediated Stabilization of MTH1 Promotes Survival of Melanoma Cells upon Oxidative Stress. , 2017, Cancer research.

[12]  Scott W. Lowe,et al.  Putting p53 in Context , 2017, Cell.

[13]  I. Iaccarino lncRNAs and MYC: An Intricate Relationship , 2017, International journal of molecular sciences.

[14]  R. Fåhraeus,et al.  p53 binds the mdmx mRNA and controls its translation , 2017, Oncogene.

[15]  Maite Huarte,et al.  A Long Noncoding RNA Regulates Sister Chromatid Cohesion. , 2016, Molecular cell.

[16]  Howard Y. Chang,et al.  Long Noncoding RNAs in Cancer Pathways. , 2016, Cancer cell.

[17]  Jianrong Li,et al.  Cancer RNA-Seq Nexus: a database of phenotype-specific transcriptome profiling in cancer cells , 2015, Nucleic Acids Res..

[18]  Maite Huarte The emerging role of lncRNAs in cancer , 2015, Nature Medicine.

[19]  A. Kasza,et al.  Simultaneous detection of mRNA and protein in single cells using immunofluorescence-combined single-molecule RNA FISH. , 2015, BioTechniques.

[20]  Yan Zhou,et al.  Identification of TRIML2, a Novel p53 Target, that Enhances p53 SUMOylation and Regulates the Transactivation of Proapoptotic Genes , 2014, Molecular Cancer Research.

[21]  Xiaoqiang Guo,et al.  The lncRNA-MYC regulatory network in cancer , 2014, Tumor Biology.

[22]  M. Neil,et al.  Absolute quantification of protein copy number using a single-molecule-sensitive microarray. , 2014, The Analyst.

[23]  D. Felsher,et al.  MYC activation is a hallmark of cancer initiation and maintenance. , 2014, Cold Spring Harbor perspectives in medicine.

[24]  L. Girard,et al.  Nullifying the CDKN2AB Locus Promotes Mutant K-ras Lung Tumorigenesis , 2014, Molecular Cancer Research.

[25]  Sanjeev Das,et al.  HDAC5, a key component in temporal regulation of p53-mediated transactivation in response to genotoxic stress. , 2013, Molecular cell.

[26]  C. Dang MYC, metabolism, cell growth, and tumorigenesis. , 2013, Cold Spring Harbor perspectives in medicine.

[27]  David E. Muench,et al.  c-Myc and Cancer Metabolism , 2012, Clinical Cancer Research.

[28]  Howard Y. Chang,et al.  Genome regulation by long noncoding RNAs. , 2012, Annual review of biochemistry.

[29]  Chi V Dang,et al.  MYC on the Path to Cancer , 2012, Cell.

[30]  E. Mohammadi,et al.  Barriers and facilitators related to the implementation of a physiological track and trigger system: A systematic review of the qualitative evidence , 2017, International journal for quality in health care : journal of the International Society for Quality in Health Care.

[31]  Peter F. Stadler,et al.  ViennaRNA Package 2.0 , 2011, Algorithms for Molecular Biology.

[32]  J. Ellenberg,et al.  The quantitative proteome of a human cell line , 2011, Molecular systems biology.

[33]  Sekhar Duraisamy,et al.  Classifying variants of CDKN2A using computational and laboratory studies , 2011, Human mutation.

[34]  Wei Gu,et al.  p53 post-translational modification: deregulated in tumorigenesis. , 2010, Trends in molecular medicine.

[35]  W. Gu,et al.  New insights into p53 activation , 2010, Cell Research.

[36]  C. Anderson,et al.  Posttranslational modification of p53: cooperative integrators of function. , 2009, Cold Spring Harbor perspectives in biology.

[37]  S. Lowe,et al.  Tumor suppressive functions of p53. , 2009, Cold Spring Harbor perspectives in biology.

[38]  C. Dang,et al.  MYC-Induced Cancer Cell Energy Metabolism and Therapeutic Opportunities , 2009, Clinical Cancer Research.

[39]  Zhuohua Zhang,et al.  Detection of protein ubiquitination. , 2009, Journal of visualized experiments : JoVE.

[40]  Y. Mo,et al.  p53 and c-myc: How does the cell balance “yin” and “yang”? , 2009, Cell cycle.

[41]  Hailong Wu,et al.  p53 represses c-Myc through induction of the tumor suppressor miR-145 , 2009, Proceedings of the National Academy of Sciences.

[42]  Minoru Yoshida,et al.  Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate. , 2009, Chemistry & biology.

[43]  G. Evan,et al.  Distinct thresholds govern Myc's biological output in vivo. , 2008, Cancer cell.

[44]  H. Reichardt,et al.  Inducible and reversible gene silencing by stable integration of an shRNA-encoding lentivirus in transgenic rats , 2008, Proceedings of the National Academy of Sciences.

[45]  W. Jiang,et al.  NUPR1 interacts with p53, transcriptionally regulates p21 and rescues breast epithelial cells from doxorubicin-induced genotoxic stress. , 2008, Current cancer drug targets.

[46]  O. Perez,et al.  Genomic and proteomic analysis reveals a threshold level of MYC required for tumor maintenance. , 2008, Cancer research.

[47]  R. Deng,et al.  p14ARF sensitizes human osteosarcoma cells to cisplatin-induced apoptosis in a p53-independent manner , 2007, Cancer biology & therapy.

[48]  J. Weber,et al.  Therapeutic targets in the ARF tumor suppressor pathway. , 2007, Current medicinal chemistry.

[49]  M. Dai,et al.  Balance of Yin and Yang: ubiquitylation-mediated regulation of p53 and c-Myc. , 2006, Neoplasia.

[50]  Kathryn A. O’Donnell,et al.  The c-Myc target gene network. , 2006, Seminars in cancer biology.

[51]  John Jeremy Rice,et al.  A plausible model for the digital response of p53 to DNA damage. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Weili Ma,et al.  p53-Dependent Transcriptional Repression of c-myc Is Required for G1 Cell Cycle Arrest , 2005, Molecular and Cellular Biology.

[53]  J. Kench,et al.  p14ARF Protein Expression Is a Predictor of Both Relapse and Survival in Squamous Cell Carcinoma of the Anterior Tongue , 2005, Clinical Cancer Research.

[54]  Zigang Dong,et al.  Post-translational modification of p53 in tumorigenesis , 2004, Nature Reviews Cancer.

[55]  Peggy J. Farnham,et al.  Analysis of Myc Bound Loci Identified by CpG Island Arrays Shows that Max Is Essential for Myc-Dependent Repression , 2003, Current Biology.

[56]  S. Lowe,et al.  Tumor suppression by Ink4a-Arf: progress and puzzles. , 2003, Current opinion in genetics & development.

[57]  S. Lowe,et al.  Dissecting p53 tumor suppressor functions in vivo. , 2002, Cancer cell.

[58]  G. Evan,et al.  Proliferation, cell cycle and apoptosis in cancer , 2001, Nature.

[59]  R. Hay,et al.  SUMO-1 Conjugation in Vivo Requires Both a Consensus Modification Motif and Nuclear Targeting* , 2001, The Journal of Biological Chemistry.

[60]  F. Bosman,et al.  Methylation Silencing and Mutations of the p14ARF and p16INK4a Genes in Colon Cancer , 2001, Laboratory Investigation.

[61]  B. Kempkes,et al.  Cell cycle activation by c‐myc in a Burkitt lymphoma model cell line , 2000, International journal of cancer.

[62]  R. Blamey,et al.  INK4a gene expression and methylation in primary breast cancer: overexpression of p16INK4a messenger RNA is a marker of poor prognosis. , 2000, Clinical cancer research : an official journal of the American Association for Cancer Research.

[63]  M. Roussel,et al.  Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. , 1999, Genes & development.

[64]  Chi V. Dang,et al.  c-Myc Target Genes Involved in Cell Growth, Apoptosis, and Metabolism , 1999, Molecular and Cellular Biology.

[65]  J L Cleveland,et al.  Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. , 1998, Genes & development.

[66]  Stephen N. Jones,et al.  Regulation of p53 stability by Mdm2 , 1997, Nature.

[67]  A. Levine p53, the Cellular Gatekeeper for Growth and Division , 1997, Cell.

[68]  H. Hermeking,et al.  Mediation of c-Myc-induced apoptosis by p53. , 1994, Science.

[69]  Bruno Amati,et al.  Oncogenic activity of the c-Myc protein requires dimerization with Max , 1993, Cell.

[70]  K. Vousden,et al.  The role of ubiquitin modification in the regulation of p53. , 2014, Biochimica et biophysica acta.

[71]  T. Tsunoda,et al.  Morphological and microarray analyses of human hepatocytes from xenogeneic host livers , 2013, Laboratory Investigation.

[72]  J. Flanagan,et al.  RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. , 2012, The Journal of molecular diagnostics : JMD.

[73]  R. Blamey,et al.  INK 4 a Gene Expression and Methylation in Primary Breast Cancer : Overexpression of p 16 INK 4 a Messenger RNA Is a Marker of Poor Prognosis 1 , 2000 .

[74]  D. Marlowe Progress and Puzzles. , 1967 .