Spontaneous Pattern Formation and Genetic Diversity in Habitats with Irregular Geographical Features

: The role of spontaneous pattern formation, the appearance of inhomogeneities that are not directly imposed by external forces, has not been closely examined in the context of the origin and maintenance of genetic diversity in wild populations. Using individual-based computer simulations, we demonstrated that such patterns form in spatially distributed species with local demes under disruptive selection. In our model systems, spatial patterns of genetic diversity arose and changed over time even in the context of a spatially homogenous environment. The spatial distribution and dynamics of the fittest genotypes were controlled by the movement of boundaries between domains of the different genotypes. The rate of diversity decay was dramatically slower than predicted by traditional models. Therefore, spontaneous pattern formation may lead to the maintenance of genetic diversity of a species in a contiguous habitat, despite reproductive mixing. Moreover, the diversity persisted significantly longer in larger habitats and habitats with irregular geographical features. Habitat structure was intimately linked to the preservation of genetic diversity. Spontaneous pattern formation should be considered along with other spatial effects in the design of conservation areas. Resumen: El papel de la formacion espontanea de patrones, la apariencia de inhomogeneidades que no son impuestas directamente por fuerzas externas, no se ha examinado detalladamente en el contexto del origen y mantenimiento de la diversidad genetica en poblaciones silvestres. Utilizando simulaciones de computadora basadas en individuos, demostramos que tales patrones se forman en especies distribuidas espacialmente con demes locales bajo seleccion disruptiva. En nuestros sistemas de modelo, los patrones espaciales de diversidad genetica surgieron y cambiaron a lo largo del tiempo aun en el contexto de un ambiente espacialmente homogeneo. La distribucion espacial y la dinamica de los genotipos mas aptos fueron controlados por el movimiento de limites entre los dominios de los genotipos diferentes. La tasa de descomposicion de diversidad fue dramaticamente mas lenta de lo predicho por modelos tradicionales. Por lo tanto, la formacion espontanea de patrones puede conducir al mantenimiento de la diversidad genetica de una especie en un habitat contiguo, a pesar de la mezcla reproductiva. Mas aun, la diversidad persistio significativamente por mas tiempo en habitats mas extensos y en habitats con caracteristicas geograficas irregulares. La estructura del habitat estuvo intimamente ligada a la preservacion de la diversidad genetica. La formacion del patron espontaneo debe ser considerada, junto con otros efectos espaciales, en el diseno de areas de conservacion.

[1]  N. Barton,et al.  NATURAL SELECTION ON QUANTITATIVE TRAITS IN THE BOMBINA HYBRID ZONE , 1995, Evolution; international journal of organic evolution.

[2]  Peter Kareiva,et al.  Spatial ecology : the role of space in population dynamics and interspecific interactions , 1998 .

[3]  L Kaufman,et al.  Symmetry breaking and coarsening in spatially distributed evolutionary processes including sexual reproduction and disruptive selection. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  R. Harrison Pattern and process in a narrow hybrid zone , 1986, Heredity.

[5]  Formalizing the gene centered view of evolution , 1999 .

[6]  N. Barton,et al.  The dynamics of hybrid zones , 1979, Heredity.

[7]  Jared M. Diamond,et al.  THE ISLAND DILEMMA: LESSONS OF MODERN BIOGEOGRAPHIC STUDIES FOR THE DESIGN OF NATURAL RESERVES , 1975 .

[8]  D. Futuyma,et al.  Hybrid zones and the evolutionary process , 1995 .

[9]  Michael Lynch,et al.  A Quantitative-Genetic Perspective on Conservation Issues , 1996 .

[10]  U. Dieckmann,et al.  On the origin of species by sympatric speciation , 1999, Nature.

[11]  Yaneer Bar-Yam,et al.  Dynamics Of Complex Systems , 2019 .

[12]  M. Cain,et al.  Spatio‐temporal dynamics of the Allonemobius fasciatus– A. socius mosaic hybrid zone: a 14‐year perspective , 2001, Molecular ecology.

[13]  A. Bray Theory of phase-ordering kinetics , 1994, cond-mat/9501089.

[14]  R. Durrett,et al.  The Importance of Being Discrete (and Spatial) , 1994 .

[15]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .

[16]  Michael E. Gilpin,et al.  The genetic effective size of a metapopulation , 1991 .

[17]  J. M. Thoday,et al.  Review Lecture Disruptive selection , 1972, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[18]  J M Thoday,et al.  Disruptive selection. , 1972, Proceedings of the Royal Society of London. Series B, Biological sciences.

[19]  M. Slatkin Gene flow and selection in a cline. , 1973, Genetics.

[20]  D. DeAngelis,et al.  Individual-Based Models and Approaches in Ecology , 1992 .

[21]  C. S. Holling,et al.  Biodiversity loss: Biodiversity in the functioning of ecosystems: an ecological synthesis , 1995 .

[22]  J. Goudet,et al.  The genetic structure of metapopulations and conservation biology. , 1994, EXS.

[23]  S. Levin Dispersion and Population Interactions , 1974, The American Naturalist.

[24]  E. Bermingham,et al.  PLUMAGE AND MITOCHONDRIAL DNA HAPLOTYPE VARIATION ACROSS A MOVING HYBRID ZONE , 2001, Evolution; international journal of organic evolution.

[25]  S. Pearson Behavioral asymmetries in a moving hybrid zone , 2000 .

[26]  S. Sarkar,et al.  Systematic conservation planning , 2000, Nature.

[27]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[28]  John A. Endler Geographic Variation, Speciation and Clines. , 1977 .

[29]  Fyodor A. Kondrashov,et al.  Interactions among quantitative traits in the course of sympatric speciation , 1999, Nature.

[30]  N. Barton,et al.  Adaptation, speciation and hybrid zones , 1989, Nature.

[31]  S. Orszag,et al.  "Critical slowing down" in time-to-extinction: an example of critical phenomena in ecology. , 1998, Journal of theoretical biology.

[32]  J. McGregor,et al.  Polymorphisms for genetic and ecological systems with weak coupling. , 1972, Theoretical population biology.

[33]  G. Hewitt Speciation, hybrid zones and phylogeography — or seeing genes in space and time , 2001, Molecular ecology.

[34]  J. Downing,et al.  Biodiversity and stability in grasslands , 1996, Nature.

[35]  T. Nagylaki,et al.  Clines with variable migration. , 1976, Genetics.