Spatio-temporal data mining with expected distribution domain generalization graphs

We describe a method for spatio-temporal data mining based on expected distribution domain generalization (ExGen) graphs. Using familiar calendar and geographical concepts, such as workdays, weeks, climatic regions, and countries, spatio-temporal data can be aggregated into summaries in many ways. We automatically search for a summary with a distribution that is anomalous, i.e., far from user expectations. We repeatedly ranked possible summaries according to current expectations, and then allow the user to adjust these expectations.

[1]  Elisa Bertino,et al.  Navigating through multiple temporal granularity objects , 2001, Proceedings Eighth International Symposium on Temporal Representation and Reasoning. TIME 2001.

[2]  Duane Szafron,et al.  Temporal Granularity: Completing the Puzzle , 2004, Journal of Intelligent Information Systems.

[3]  Cláudia Antunes,et al.  Temporal Data Mining: an overview , 2001 .

[4]  Sushil Jajodia,et al.  Time Granularities in Databases, Data Mining, and Temporal Reasoning , 2000, Springer Berlin Heidelberg.

[5]  Nick Cercone,et al.  Data Mining in Large Databases Using Domain Generalization Graphs , 1999, Journal of Intelligent Information Systems.

[6]  Francesco Pinciroli,et al.  Managing time granularity of narrative clinical information: the temporal data model TIME-NESIS , 1996, Proceedings Third International Workshop on Temporal Representation and Reasoning (TIME '96).

[7]  Howard J. Hamilton,et al.  Generalization for calendar attributes using domain generalization graphs , 1998, Proceedings. Fifth International Workshop on Temporal Representation and Reasoning (Cat. No.98EX157).

[8]  Xiaodong Chen,et al.  Discovering Temporal Association Rules in Temporal Databases , 1998, IADT.

[9]  Howard J. Hamilton,et al.  Heuristic Measures of Interestingness , 1999, PKDD.

[10]  Osmar R. Zaïane,et al.  Proceedings of the Second International Workshop on Multimedia Data Mining, MDM/KDD'2001, August 26th, 2001, San Francisco, CA, USA , 2001, MDM/KDD.

[11]  Stephen D. Bay,et al.  Detecting Group Differences: Mining Contrast Sets , 2001, Data Mining and Knowledge Discovery.

[12]  Jiawei Han,et al.  Attribute-Oriented Induction in Relational Databases , 1991, Knowledge Discovery in Databases.

[13]  Xiaodong Chen,et al.  Mining Temporal Features in Association Rules , 1999, PKDD.

[14]  Sushil Jajodia,et al.  Discovering calendar-based temporal association rules , 2003 .

[15]  Jan M. Zytkow,et al.  From Contingency Tables to Various Forms of Knowledge in Databases , 1996, Advances in Knowledge Discovery and Data Mining.

[16]  Howard J. Hamilton,et al.  Looking Backward, Forward, and All Around: Temporal, Spatial, and Spatio-Temporal Data Mining , 2002, FLAIRS Conference.

[17]  John F. Roddick,et al.  Adding Temporal Semantics to Association Rules , 1999, PKDD.

[18]  Ming-Syan Chen,et al.  On mining general temporal association rules in a publication database , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[19]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery: An Overview , 1996, Advances in Knowledge Discovery and Data Mining.

[20]  Howard J. Hamilton,et al.  Knowledge discovery and measures of interest , 2001 .

[21]  John F. Roddick,et al.  Temporal, Spatial, and Spatio-Temporal Data Mining , 2001, Lecture Notes in Computer Science.

[22]  Howard J. Hamilton,et al.  Expectation Propagation in ExGen Graphs for Summarization : Preliminary Report , 2012 .