Reduction of the Error in the Electrical Characterization of Organic Field-Effect Transistors Based on Donor–Acceptor Polymer Semiconductors

[1]  J. Won,et al.  Room-temperature, printed, low-voltage, flexible organic field-effect transistors using soluble polyimide gate dielectrics , 2020 .

[2]  K. Cho,et al.  Three-dimensional monolithic integration in flexible printed organic transistors , 2019, Nature Communications.

[3]  Hyungju Ahn,et al.  Parylene-Based Double-Layer Gate Dielectrics for Organic Field-Effect Transistors. , 2018, ACS applied materials & interfaces.

[4]  Yun‐Hi Kim,et al.  Control of Concentration of Nonhydrogen-Bonded Hydroxyl Groups in Polymer Dielectrics for Organic Field-Effect Transistors with Operational Stability. , 2018, ACS applied materials & interfaces.

[5]  Takayuki Okachi Mobility overestimation due to minority carrier injection and trapping in organic field-effect transistors , 2018, Organic Electronics.

[6]  Guanxin Zhang,et al.  Significant Improvement of Semiconducting Performance of the Diketopyrrolopyrrole-Quaterthiophene Conjugated Polymer through Side-Chain Engineering via Hydrogen-Bonding. , 2016, Journal of the American Chemical Society.

[7]  K. Müllen,et al.  Mobility Exceeding 10 cm2/(V·s) in Donor–Acceptor Polymer Transistors with Band-like Charge Transport , 2016 .

[8]  Yong-Young Noh,et al.  Fully-printed, all-polymer, bendable and highly transparent complementary logic circuits , 2015 .

[9]  T. Shin,et al.  Investigation of Structure–Property Relationships in Diketopyrrolopyrrole-Based Polymer Semiconductors via Side-Chain Engineering , 2015 .

[10]  S. Bauer Flexible electronics: Sophisticated skin. , 2013, Nature materials.

[11]  T. Ahn,et al.  Photo-patternable polyimide gate insulator with fluorine groups for improving performance of 2,7-didecyl[1]benzothieno[3,2-b][1]benzothiopene (C10-BTBT) thin-film transistors , 2013 .

[12]  Benjamin C. K. Tee,et al.  Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring , 2013, Nature Communications.

[13]  Changduk Yang,et al.  Solution-processable ambipolar diketopyrrolopyrrole-selenophene polymer with unprecedentedly high hole and electron mobilities. , 2012, Journal of the American Chemical Society.

[14]  K. Tsukagoshi,et al.  Optimal Structure for High‐Performance and Low‐Contact‐Resistance Organic Field‐Effect Transistors Using Contact‐Doped Coplanar and Pseudo‐Staggered Device Architectures , 2012 .

[15]  T. Ahn,et al.  Direct photo-patternable, low-temperature processable polyimide gate insulator for pentacene thin-film transistors , 2012 .

[16]  Donghoon Choi,et al.  2,5-Bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4-(2H,5H)-dione-based donor-acceptor alternating copolymer bearing 5,5'-di(thiophen-2-yl)-2,2'-biselenophene exhibiting 1.5 cm2·V(-1)·s(-1) hole mobility in thin-film transistors. , 2011, Journal of the American Chemical Society.

[17]  T. Someya,et al.  Flexible organic transistors and circuits with extreme bending stability. , 2010, Nature materials.

[18]  C. Ucurum,et al.  Impact of electrical measurement parameters on the hysteresis behavior of pentacene-based organic thin-film transistors , 2010 .

[19]  Gilles Horowitz,et al.  GATE VOLTAGE DEPENDENT MOBILITY OF OLIGOTHIOPHENE FIELD-EFFECT TRANSISTORS , 1999 .

[20]  Hyun Ho Choi,et al.  Critical assessment of charge mobility extraction in FETs. , 2017, Nature materials.

[21]  Joon Hak Oh,et al.  ε‐Branched Flexible Side Chain Substituted Diketopyrrolopyrrole‐Containing Polymers Designed for High Hole and Electron Mobilities , 2015 .