Integrative analysis for finding genes and networks involved in diabetes and other complex diseases

We have developed an integrative analysis method combining genetic interactions, identified using type 1 diabetes genome scan data, and a high-confidence human protein interaction network. Resulting networks were ranked by the significance of the enrichment of proteins from interacting regions. We identified a number of new protein network modules and novel candidate genes/proteins for type 1 diabetes. We propose this type of integrative analysis as a general method for the elucidation of genes and networks involved in diabetes and other complex diseases.

[1]  N. Risch Linkage strategies for genetically complex traits. I. Multilocus models. , 1990, American journal of human genetics.

[2]  N. Risch Linkage strategies for genetically complex traits. II. The power of affected relative pairs. , 1990, American journal of human genetics.

[3]  N. Risch,et al.  Linkage strategies for genetically complex traits. III. The effect of marker polymorphism on analysis of affected relative pairs. , 1990, American journal of human genetics.

[4]  M Farrall,et al.  Two-locus maximum lod score analysis of a multifactorial trait: joint consideration of IDDM2 and IDDM4 with IDDM1 in type 1 diabetes. , 1995, American journal of human genetics.

[5]  M. Farrall Affected sibpair linkage tests for multiple linked susceptibility genes , 1997, Genetic epidemiology.

[6]  A. Schäffer,et al.  Linkage analyses in type I diabetes mellitus using CASPAR, a software and statistical program for conditional analysis of polygenic diseases. , 1997, Human heredity.

[7]  J. Weissenbach,et al.  Evidence of a non-MHC susceptibility locus in type I diabetes linked to HLA on chromosome 6. , 1997, American journal of human genetics.

[8]  Yan P. Yuan,et al.  Predicting function: from genes to genomes and back. , 1998, Journal of molecular biology.

[9]  Sara A. Solla,et al.  Multi-Locus Nonparametric Linkage Analysis of Complex Trait Loci with Neural Networks , 1998, Human Heredity.

[10]  Nancy J. Cox,et al.  Loci on chromosomes 2 (NIDDM1) and 15 interact to increase susceptibility to diabetes in Mexican Americans , 1999, Nature Genetics.

[11]  Gen Tamiya,et al.  Complete sequence and gene map of a human major histocompatibility complex , 1999 .

[12]  Elena S. Babaylova,et al.  Complete sequence and gene map of a human major histocompatibility complex , 1999, Nature.

[13]  D. Beier,et al.  Genetic localization of interacting modifiers affecting severity in a murine model of polycystic kidney disease. , 2000, Genome research.

[14]  R. Elston,et al.  Multilocus linkage tests based on affected relative pairs. , 2000, American journal of human genetics.

[15]  D Curtis,et al.  Use of an artificial neural network to detect association between a disease and multiple marker genotypes , 2001, Annals of human genetics.

[16]  Jae Hyun Kim,et al.  Genetic analysis of a new mouse model for non-insulin-dependent diabetes. , 2001, Genomics.

[17]  Ian M. Donaldson,et al.  BIND: the Biomolecular Interaction Network Database , 2001, Nucleic Acids Res..

[18]  F. Pociot,et al.  A genomewide scan for type 1-diabetes susceptibility in Scandinavian families: identification of new loci with evidence of interactions. , 2001, American journal of human genetics.

[19]  N J Cox,et al.  Seven regions of the genome show evidence of linkage to type 1 diabetes in a consensus analysis of 767 multiplex families. , 2001, American journal of human genetics.

[20]  Daniel E. Weeks,et al.  The Complexity of Linkage Analysis with Neural Networks , 2001, Human Heredity.

[21]  Christian E. V. Storm,et al.  Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. , 2001, Journal of molecular biology.

[22]  D. Clayton,et al.  Statistical modeling of interlocus interactions in a complex disease: rejection of the multiplicative model of epistasis in type 1 diabetes. , 2001, Genetics.

[23]  H. Cordell Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans. , 2002, Human molecular genetics.

[24]  B. Snel,et al.  Comparative assessment of large-scale data sets of protein–protein interactions , 2002, Nature.

[25]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[26]  L. Cardon,et al.  The IBD6 Crohn's disease locus demonstrates complex interactions with CARD15 and IBD5 disease-associated variants. , 2003, Human molecular genetics.

[27]  Bill C White,et al.  Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human diseases , 2003, BMC Bioinformatics.

[28]  S. Kerje,et al.  A global search reveals epistatic interaction between QTL for early growth in the chicken. , 2003, Genome research.

[29]  F. Pociot,et al.  Evidence for linkage on chromosome 4p16.1 in Type 1 diabetes Danish families and complete mutation scanning of the WFS1 (Wolframin) gene , 2004, Diabetic medicine : a journal of the British Diabetic Association.

[30]  A. Fraser,et al.  A first-draft human protein-interaction map , 2004, Genome Biology.

[31]  C. Molony,et al.  Genetic analysis of genome-wide variation in human gene expression , 2004, Nature.

[32]  F. Pociot,et al.  Novel analytical methods applied to type 1 diabetes genome-scan data. , 2004, American journal of human genetics.

[33]  Martin Vingron,et al.  IntAct: an open source molecular interaction database , 2004, Nucleic Acids Res..

[34]  Chris S. Haley,et al.  Epistasis: too often neglected in complex trait studies? , 2004, Nature Reviews Genetics.

[35]  Ian M. Donaldson,et al.  The Biomolecular Interaction Network Database and related tools 2005 update , 2004, Nucleic Acids Res..

[36]  Lincoln Stein,et al.  Reactome: a knowledgebase of biological pathways , 2004, Nucleic Acids Res..

[37]  Margit Burmeister,et al.  Genetical genomics: combining genetics with gene expression analysis. , 2005, Human molecular genetics.

[38]  C. V. Jongeneel,et al.  Gene expression variation and expression quantitative trait mapping of human chromosome 21 genes. , 2005, Human molecular genetics.

[39]  Erik L. L. Sonnhammer,et al.  Inparanoid: a comprehensive database of eukaryotic orthologs , 2004, Nucleic Acids Res..

[40]  P. Cheung Concannon P, Erlich HA, Julier C, Morahan G, Nerup J, Pociot F, Todd JA, Rich SS and the Type 1 Diabetes Genetics Consortium. Type 1 Diabetes: Evidence for Susceptibility Loci from Four Genome-Wide Linkage Scans in 1,435 Multiplex Families. , 2005 .

[41]  F. Pociot,et al.  Fine mapping of a region on chromosome 21q21.11–q22.3 showing linkage to type 1 diabetes , 2005, Journal of Medical Genetics.

[42]  S. Hunt,et al.  Genome-Wide Associations of Gene Expression Variation in Humans , 2005, PLoS genetics.

[43]  Grant Morahan,et al.  Type 1 diabetes: evidence for susceptibility loci from four genome-wide linkage scans in 1,435 multiplex families. , 2005, Diabetes.

[44]  A. Barabasi,et al.  A Protein–Protein Interaction Network for Human Inherited Ataxias and Disorders of Purkinje Cell Degeneration , 2006, Cell.

[45]  J. Todd,et al.  The Type 1 Diabetes Genetics Consortium , 2006, Annals of the New York Academy of Sciences.

[46]  C. Wijmenga,et al.  Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. , 2006, American journal of human genetics.

[47]  Kiyoko F. Aoki-Kinoshita,et al.  From genomics to chemical genomics: new developments in KEGG , 2005, Nucleic Acids Res..

[48]  Gustavo Glusman,et al.  Genetic mapping at 3-kilobase resolution reveals inositol 1,4,5-triphosphate receptor 3 as a risk factor for type 1 diabetes in Sweden. , 2006, American journal of human genetics.

[49]  K. N. Chandrika,et al.  Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets , 2006, Nature Genetics.

[50]  Gabriele Ausiello,et al.  MINT: the Molecular INTeraction database , 2006, Nucleic Acids Res..

[51]  Pall I. Olason,et al.  A human phenome-interactome network of protein complexes implicated in genetic disorders , 2007, Nature Biotechnology.