Hydrogen Adsorption and Storage

[1]  Xuebin Yu,et al.  Enhanced hydrogen storage performance of LiBH4-Ni composite , 2009 .

[2]  T. Hoang,et al.  Exploiting the Kubas Interaction in the Design of Hydrogen Storage Materials , 2009 .

[3]  Hongwei Yang,et al.  Hydrogen storage in a CaH2/LiBH4 destabilized metal hydride system , 2009 .

[4]  S. Saxena,et al.  Bulk modulus and thermal expansion coefficient of mechano-chemically synthesized Mg2FeH6 from high temperature and high pressure studies , 2009 .

[5]  J. Long,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[6]  D. Akins,et al.  Enhanced dehydrogenation of LiBH4 catalyzed by carbon-supported Pt nanoparticles. , 2008, Chemical communications.

[7]  Xin Hu,et al.  Hydrogen storage in mesoporous titanium oxide-alkali fulleride composites. , 2008, Inorganic chemistry.

[8]  S. Orimo,et al.  Synthesis and dehydrogenation of M(AlH4)2 (M = Mg, Ca) , 2007 .

[9]  G. Olson,et al.  Thermodynamic destabilization and reaction kinetics in light metal hydride systems , 2007 .

[10]  Omar M Yaghi,et al.  Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). , 2007, Journal of the American Chemical Society.

[11]  A. Züttel,et al.  Complex hydrides for hydrogen storage. , 2007, Chemical reviews.

[12]  M. Hirscher,et al.  Metal hydride materials for solid hydrogen storage: a review , 2007 .

[13]  D. Y. Kim,et al.  Graphite nanofibers prepared from catalytic graphitization of electrospun poly(vinylidene fluoride) nanofibers and their hydrogen storage capacity , 2007 .

[14]  Young Ho Kim,et al.  The adsorption properties of surface modified activated carbon fibers for hydrogen storages , 2007 .

[15]  J. Long,et al.  The role of vacancies in the hydrogen storage properties of Prussian blue analogues , 2007 .

[16]  K. Nahm,et al.  Intrinsic linear scaling of hydrogen storage capacity of carbon nanotubes with the specific surface area , 2007 .

[17]  Xin Hu,et al.  Hydrogen Storage in Microporous Titanium Oxides Reduced by Early Transition Metal Organometallic Sandwich Compounds , 2007 .

[18]  K. Nahm,et al.  Spillover of physisorbed hydrogen from sputter-deposited arrays of platinum nanoparticles to multi-walled carbon nanotubes , 2007 .

[19]  Chen‐Chia Huang,et al.  Hydrogen storage by KOH-modified multi-walled carbon nanotubes , 2007 .

[20]  Cornelis P. Balde,et al.  Active Ti Species in TiCl3-Doped NaAlH4. Mechanism for Catalyst Deactivation , 2007 .

[21]  R. Mokaya,et al.  Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. , 2007, Journal of the American Chemical Society.

[22]  B. Tohidi,et al.  Low-pressure molecular hydrogen storage in semi-clathrate hydrates of quaternary ammonium compounds. , 2007, Journal of the American Chemical Society.

[23]  T. Baumann,et al.  Toward New Candidates for Hydrogen Storage: High-Surface-Area Carbon Aerogels , 2006 .

[24]  Gérard Férey,et al.  Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. , 2006, Angewandte Chemie.

[25]  Craig M. Brown,et al.  Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. , 2006, Journal of the American Chemical Society.

[26]  A. Cheetham,et al.  Adsorption of molecular hydrogen on coordinatively unsaturated Ni(II) sites in a nanoporous hybrid material. , 2006, Journal of the American Chemical Society.

[27]  A. J. Blake,et al.  High H2 adsorption by coordination-framework materials. , 2006, Angewandte Chemie.

[28]  C. Serre,et al.  Synthesis of MIL-102, a chromium carboxylate metal-organic framework, with gas sorption analysis. , 2006, Journal of the American Chemical Society.

[29]  K. B. Yoon,et al.  Mechanochemical synthesis and thermal decomposition of Mg(AlH4)2 , 2006 .

[30]  P. T. Moseley,et al.  Hydrogen storage by carbon materials , 2006 .

[31]  Hong-Cai Zhou,et al.  A metal-organic framework with entatic metal centers exhibiting high gas adsorption affinity. , 2006, Journal of the American Chemical Society.

[32]  Xin Hu,et al.  Hydrogen storage in chemically reducible mesoporous and microporous Ti oxides. , 2006, Journal of the American Chemical Society.

[33]  R. T. Yang,et al.  Hydrogen storage in low silica type X zeolites. , 2006, The journal of physical chemistry. B.

[34]  E. D. Sloan,et al.  Molecular hydrogen storage in binary THF-H2 clathrate hydrates. , 2006, The journal of physical chemistry. B.

[35]  M. Marella,et al.  Synthesis of carbon nanofibers and measurements of hydrogen storage , 2006 .

[36]  A. Arenillas,et al.  Activation of carbon nanofibres for hydrogen storage , 2006 .

[37]  B. Bogdanovic,et al.  Dependence of dissociation pressure upon doping level of Ti-doped sodium alanate--a possibility for "thermodynamic tailoring" of the system. , 2006, Physical chemistry chemical physics : PCCP.

[38]  Banglin Chen,et al.  Hydrogen adsorption in an interpenetrated dynamic metal-organic framework. , 2006, Inorganic chemistry.

[39]  J. Long,et al.  Microporous metal-organic frameworks incorporating 1,4-benzeneditetrazolate: syntheses, structures, and hydrogen storage properties. , 2006, Journal of the American Chemical Society.

[40]  R. T. Yang,et al.  Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover. , 2006, Journal of the American Chemical Society.

[41]  Jong‐San Chang,et al.  Low-temperature adsorption of hydrogen on nanoporous aluminophosphates: effect of pore size. , 2006, The journal of physical chemistry. B.

[42]  Randall Q Snurr,et al.  Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[43]  Hyunseok Kim,et al.  Hydrogen storage and desorption properties of Ni-dispersed carbon nanotubes , 2006 .

[44]  Shichun Mu,et al.  Hydrogen storage in carbon nanotubes modified by microwave plasma etching and Pd decoration , 2006 .

[45]  S. Kaskel,et al.  Improved Hydrogen Storage in the Metal‐Organic Framework Cu3(BTC)2 , 2006 .

[46]  E. Ruckenstein,et al.  Clathrate hydrogen hydrate--a promising material for hydrogen storage. , 2006, Angewandte Chemie.

[47]  Daofeng Sun,et al.  An interweaving MOF with high hydrogen uptake. , 2006, Journal of the American Chemical Society.

[48]  Ulrich Müller,et al.  Hydrogen Adsorption in Metal–Organic Frameworks: Cu‐MOFs and Zn‐MOFs Compared , 2006 .

[49]  Omar M Yaghi,et al.  Exceptional H2 saturation uptake in microporous metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[50]  M. Hirscher,et al.  Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. , 2006, Chemical communications.

[51]  M. Latroche,et al.  Structural, solid-gas and electrochemical characterization of Mg2Ni-rich and MgxNi100-x amorphous-rich nanomaterials obtained by mechanical alloying , 2006 .

[52]  L. Ouyang,et al.  Composite structure and hydrogen storage properties in Mg-base alloys , 2006 .

[53]  A. Dailly,et al.  Saturation of hydrogen sorption in Zn benzenedicarboxylate and Zn naphthalenedicarboxylate. , 2006, The journal of physical chemistry. B.

[54]  R. T. Yang,et al.  Significantly enhanced hydrogen storage in metal-organic frameworks via spillover. , 2006, Journal of the American Chemical Society.

[55]  Chongli Zhong,et al.  Understanding hydrogen adsorption in metal-organic frameworks with open metal sites: a computational study. , 2006, The journal of physical chemistry. B.

[56]  B. Bogdanovic,et al.  Mechanochemical preparation and investigation of properties of magnesium, calcium and lithium–magnesium alanates , 2006 .

[57]  A. Handstein,et al.  Hydrogen sorption properties of Mg-1 wt.% Ni-0.2 wt.% Pd prepared by reactive milling , 2005 .

[58]  Michael Hirscher,et al.  Nanostructures with high surface area for hydrogen storage , 2005 .

[59]  Bjørn C. Hauback,et al.  Thermal decomposition of Mg(AlH4)2 studied by in situ synchrotron X-ray diffraction , 2005 .

[60]  Andreas Züttel,et al.  Dehydriding and rehydriding reactions of LiBH4 , 2005 .

[61]  I. R. Harris,et al.  Hydrogen storage in ion-exchanged zeolites , 2005 .

[62]  T. Emge,et al.  Achieving High Density of Adsorbed Hydrogen in Microporous Metal Organic Frameworks , 2005 .

[63]  G. Spoto,et al.  Theoretical maximal storage of hydrogen in zeolitic frameworks. , 2005, Physical chemistry chemical physics : PCCP.

[64]  Y. Gogotsi,et al.  Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. , 2005, Journal of the American Chemical Society.

[65]  Cheol-Eui Lee,et al.  Hydrogen storage capacity of different carbon nanostructures in ambient conditions , 2005 .

[66]  Anthony J. Lachawiec,et al.  Hydrogen storage in nanostructured carbons by spillover: bridge-building enhancement. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[67]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[68]  M. Au,et al.  Modified lithium borohydrides for reversible hydrogen storage (2). , 2005, The journal of physical chemistry. B.

[69]  K. Lillerud,et al.  Hydrogen storage in Chabazite zeolite frameworks. , 2005, Physical chemistry chemical physics : PCCP.

[70]  J. Jagiello,et al.  Gas sorption properties of microporous metal organic frameworks , 2005 .

[71]  Siegmar Roth,et al.  Hydrogen adsorption in different carbon nanostructures , 2005 .

[72]  A. Fletcher,et al.  Flexibility in metal-organic framework materials: impact on sorption properties , 2005 .

[73]  Omar M Yaghi,et al.  Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.

[74]  Hui-Ming Cheng,et al.  Carbon nanotubes for clean energy applications , 2005 .

[75]  J. A. Ritter,et al.  On the Reversibility of Hydrogen Storage in Novel Complex Hydrides , 2005 .

[76]  K. Chapman,et al.  Reversible hydrogen gas uptake in nanoporous Prussian Blue analogues. , 2005, Chemical communications.

[77]  Jeffrey R. Long,et al.  Strong H2 Binding and Selective Gas Adsorption within the Microporous Coordination Solid Mg3(O2C-C10H6-CO2)3 , 2005 .

[78]  Hyunuk Kim,et al.  Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials. , 2005, Chemistry.

[79]  Chongli Zhong,et al.  Molecular simulation of adsorption and diffusion of hydrogen in metal-organic frameworks. , 2005, The journal of physical chemistry. B.

[80]  W. Goddard,et al.  Liquefaction of H2 molecules upon exterior surfaces of carbon nanotube bundles , 2005 .

[81]  A. Fletcher,et al.  Hydrogen adsorption on functionalized nanoporous activated carbons. , 2005, The journal of physical chemistry. B.

[82]  M. Delgado,et al.  Thermodynamic studies on hydrogen adsorption on the zeolites Na-ZSM-5 and K-ZSM-5 , 2005 .

[83]  Yong-Hyun Kim,et al.  Hydrogen storage in novel organometallic buckyballs. , 2005, Physical review letters.

[84]  J. Long,et al.  Hydrogen storage in the dehydrated prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn). , 2005, Journal of the American Chemical Society.

[85]  K. Lillerud,et al.  Liquid hydrogen in protonic chabazite. , 2005, Journal of the American Chemical Society.

[86]  Huang Zeng,et al.  Tuning clathrate hydrates for hydrogen storage , 2005, Nature.

[87]  Michael Hirscher,et al.  Hydrogen Physisorption in Metal–Organic Porous Crystals , 2005 .

[88]  Mauricio Terrones,et al.  Hydrogen storage in spherical nanoporous carbons , 2005 .

[89]  Florian Mertens,et al.  Reversible storage of hydrogen in destabilized LiBH4. , 2005, The journal of physical chemistry. B.

[90]  S. Orimo,et al.  Destabilization of LiBH4 by mixing with LiNH2 , 2005 .

[91]  J. Dentzer,et al.  Hydrogen storage in activated carbon materials: Role of the nanoporous texture , 2004 .

[92]  Qingyuan Hu,et al.  Hydrogen adsorption in mesoporous carbons , 2004 .

[93]  A. Fletcher,et al.  Hysteretic Adsorption and Desorption of Hydrogen by Nanoporous Metal-Organic Frameworks , 2004, Science.

[94]  E. D. Sloan,et al.  Stable Low-Pressure Hydrogen Clusters Stored in a Binary Clathrate Hydrate , 2004, Science.

[95]  M. Fichtner,et al.  Chemical State and Local Structure Around Titanium Atoms in NaAlH4 Doped with TiCl3 Using X‐Ray Absorption Spectroscopy. , 2004 .

[96]  Kimoon Kim,et al.  Rigid and flexible: a highly porous metal-organic framework with unusual guest-dependent dynamic behavior. , 2004, Angewandte Chemie.

[97]  Ferdi Schüth,et al.  Combined TEM-EDX and XAFS studies of Ti-doped sodium alanate , 2004 .

[98]  Omar M. Yaghi,et al.  Metal-organic frameworks: a new class of porous materials , 2004 .

[99]  M. Rosseinsky,et al.  Recent developments in metal–organic framework chemistry: design, discovery, permanent porosity and flexibility ☆ , 2004 .

[100]  R. T. Yang,et al.  Hydrogen Spillover to Enhance Hydrogen Storage -- Study of the Effect of Carbon Physicochemical Properties , 2004 .

[101]  A. Seayad,et al.  Recent Advances in Hydrogen Storage in Metal‐Containing Inorganic Nanostructures and Related Materials , 2004 .

[102]  M. P. Suh,et al.  A robust porous material constructed of linear coordination polymer chains: reversible single-crystal to single-crystal transformations upon dehydration and rehydration. , 2004, Angewandte Chemie.

[103]  S. Orimo,et al.  Destabilization of Li-based complex hydrides , 2004 .

[104]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[105]  J. Lyubina,et al.  Synthesis and decomposition of Mg2FeH6 prepared by reactive milling , 2004 .

[106]  H. Hatori,et al.  Adsorptive hydrogen storage in carbon and porous materials , 2004 .

[107]  G. Kearley,et al.  Hydrogen adsorption in carbon nanostructures compared , 2004 .

[108]  Omar M Yaghi,et al.  Hydrogen sorption in functionalized metal-organic frameworks. , 2004, Journal of the American Chemical Society.

[109]  Yaping Zhou,et al.  A comparative study of hydrogen adsorption on superactivated carbon versus carbon nanotubes , 2004 .

[110]  Pierre Bénard,et al.  Storage of hydrogen on single-walled carbon nanotubes and other carbon structures , 2004 .

[111]  J. Chen,et al.  Review of hydrogen storage in inorganic fullerene-like nanotubes , 2004 .

[112]  Hiromichi Kataura,et al.  Hydrogen adsorption and desorption in carbon nanotube systems and its mechanisms , 2004 .

[113]  A. Züttel,et al.  Model for the hydrogen adsorption on carbon nanostructures , 2004 .

[114]  Andreas Züttel,et al.  Hydrogen storage methods , 2004, Naturwissenschaften.

[115]  Wenchuan Wang,et al.  Adsorption of Methane and Hydrogen on Mesocarbon Microbeads by Experiment and Molecular Simulation , 2004 .

[116]  Michael O'Keeffe,et al.  A route to high surface area, porosity and inclusion of large molecules in crystals , 2004, Nature.

[117]  Gu Xu,et al.  High pressure saturation of hydrogen stored by single-wall carbon nanotubes , 2004 .

[118]  R. T. Yang,et al.  Hydrogen storage in graphite nanofibers: effect of synthesis catalyst and pretreatment conditions. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[119]  H. Mao,et al.  Hydrogen storage in molecular compounds. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[120]  J. Johnson,et al.  Microporous metal organic materials: promising candidates as sorbents for hydrogen storage. , 2004, Journal of the American Chemical Society.

[121]  Kimoon Kim,et al.  Microporous manganese formate: a simple metal-organic porous material with high framework stability and highly selective gas sorption properties. , 2004, Journal of the American Chemical Society.

[122]  C. Serre,et al.  Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C-C6H4-CO2) (M = Al3+, Cr3+), MIL-53. , 2003, Chemical communications.

[123]  J. Tse,et al.  Thermodynamic stability of hydrogen clathrates , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[124]  Dong Xu,et al.  Hydrogen adsorption of open-tipped insufficiently graphitized multiwalled carbon nanotubes , 2003 .

[125]  M. Shiraishi,et al.  Dense hydrogen adsorption on carbon subnanopores at 77 K , 2003 .

[126]  G. Kearley,et al.  Hydrogen adsorption in carbon nanostructures: comparison of nanotubes, fibers, and coals. , 2003, Chemistry.

[127]  A. Züttel Materials for hydrogen storage , 2003 .

[128]  I. R. Harris,et al.  Hydrogenation properties of nanocrystalline Mg- and Mg2Ni-based compounds modified with platinum group metals (PGMs) , 2003 .

[129]  Paul A. Anderson,et al.  Hydrogen adsorption in zeolites a, x, y and rho , 2003 .

[130]  M. Hirscher,et al.  Are carbon nanostructures an efficient hydrogen storage medium , 2003 .

[131]  D. L. Anton,et al.  Hydrogen desorption kinetics in transition metal modified NaAlH4 , 2003 .

[132]  Andreas Züttel,et al.  Hydrogen storage properties of LiBH4 , 2003 .

[133]  M. Fichtner,et al.  Magnesium alanate-a material for reversible hydrogen storage? , 2003 .

[134]  C. Janiak Engineering coordination polymers towards applications , 2003 .

[135]  S. Kaskel,et al.  Improved Hydrogen Storage Properties of Ti‐Doped Sodium Alanate Using Titanium Nanoparticles as Doping Agents , 2003 .

[136]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[137]  Andreas Züttel,et al.  LiBH4 a new hydrogen storage material , 2003 .

[138]  J. Eckert,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[139]  E. Tanabe,et al.  Unusual hydrogen absorption properties in graphite mechanically milled under various hydrogen pressures up to 6 MPa , 2003 .

[140]  Jianfeng Chen,et al.  Hydrogen Adsorption Storage on Single-Walled Carbon Nanotube Arrays by a Combination of Classical Potential and Density Functional Theory , 2003 .

[141]  F. Cleri,et al.  Role of surface chemistry in hydrogen adsorption in single-wall carbon nanotubes , 2003 .

[142]  Koji Kadono,et al.  Hydrogen storage capacity of commercially available carbon materials at room temperature , 2003 .

[143]  K. S. Dhathathreyan,et al.  Hydrogen storage in carbon nanotubes and related materials , 2003 .

[144]  Andreas Züttel,et al.  Hydrogen storage in carbon nanotubes. , 2003, Journal of nanoscience and nanotechnology.

[145]  A. Cheetham,et al.  Hydrogen adsorption in nanoporous nickel(II) phosphates. , 2003, Journal of the American Chemical Society.

[146]  Gerbrand Ceder,et al.  First-principles study of the stability and electronic structure of metal hydrides , 2002 .

[147]  Viera Skakalova,et al.  Chemical processes during solid state reaction of carbon with alkali salts prepared for gravimetric hydrogen storage measurements , 2002 .

[148]  Sumio Iijima,et al.  Carbon nanotubes: past, present, and future , 2002 .

[149]  Ho-Kwang Mao,et al.  Hydrogen Clusters in Clathrate Hydrate , 2002, Science.

[150]  Diego Cazorla-Amorós,et al.  Hydrogen Storage in Activated Carbons and Activated Carbon Fibers , 2002 .

[151]  G. Sandrock,et al.  Effect of Ti-catalyst content on the reversible hydrogen storage properties of the sodium alanates , 2002 .

[152]  A. Yamada,et al.  Hydrogen storage in single-walled carbon nanotube bundles and peapods , 2002 .

[153]  C. Koh,et al.  Towards a fundamental understanding of natural gas hydrates. , 2002, Chemical Society reviews.

[154]  Wang Qikun,et al.  Hydrogen storage by carbon nanotube and their films under ambient pressure , 2002 .

[155]  Jörg Fink,et al.  Hydrogen storage in different carbon nanostructures , 2002 .

[156]  R. T. Yang,et al.  Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite: Insight into hydrogen storage in carbon nanotubes , 2002 .

[157]  Angela D. Lueking,et al.  Hydrogen Spillover from a Metal Oxide Catalyst onto Carbon Nanotubes—Implications for Hydrogen Storage , 2002 .

[158]  Andreas Züttel,et al.  Hydrogen storage in carbon nanostructures , 2002 .

[159]  Roger J. Mortimer,et al.  Studies into the Storage of Hydrogen in Carbon Nanofibers: Proposal of a Possible Reaction Mechanism , 2002 .

[160]  D. Antonelli,et al.  Recent advances in synthesis and applications of transition metal containing mesoporous molecular sieves. , 2002, Angewandte Chemie.

[161]  Nancy Y. C. Yang,et al.  Microstructural characterization of catalyzed NaAlH4 , 2002 .

[162]  Andreas Züttel,et al.  Hydrogen sorption by carbon nanotubes and other carbon nanostructures , 2002 .

[163]  M. Sutton,et al.  Structure of nanocomposite metal hydrides , 2002 .

[164]  Jörg Fink,et al.  Hydrogen storage in carbon nanostructures , 2002 .

[165]  Quan-hong Yang,et al.  Bulk Storage Capacity of Hydrogen in Purified Multiwalled Carbon Nanotubes , 2002 .

[166]  Gary G. Tibbetts,et al.  Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers , 2001 .

[167]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[168]  G. Kubas Metal–dihydrogen and σ-bond coordination: the consummate extension of the Dewar–Chatt–Duncanson model for metal–olefin π bonding , 2001 .

[169]  Hui-Ming Cheng,et al.  Hydrogen storage in carbon nanotubes , 2001 .

[170]  T. Fukunaga,et al.  Hydrogen desorption property of mechanically prepared nanostructured graphite , 2001 .

[171]  Ji Liang,et al.  Hydrogen storage of dense-aligned carbon nanotubes , 2001 .

[172]  Hansong Cheng,et al.  Mechanism of hydrogen sorption in single-walled carbon nanotubes. , 2001, Journal of the American Chemical Society.

[173]  G. Seifert,et al.  A hydrogen storage mechanism in single-walled carbon nanotubes. , 2001, Journal of the American Chemical Society.

[174]  X. Bai,et al.  Hydrogen storage in aligned carbon nanotubes , 2001 .

[175]  K. D. de Jong,et al.  Hydrogen storage using physisorption – materials demands , 2001 .

[176]  Yuchen Ma,et al.  Effective hydrogen storage in single-wall carbon nanotubes , 2001 .

[177]  H Li,et al.  Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. , 2001, Accounts of chemical research.

[178]  R. Chahine,et al.  Determination of the Adsorption Isotherms of Hydrogen on Activated Carbons above the Critical Temperature of the Adsorbate over Wide Temperature and Pressure Ranges , 2001 .

[179]  A. Załuska,et al.  Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage , 2001 .

[180]  P. Downes,et al.  Hydrogen storage in sonicated carbon materials , 2001 .

[181]  S. Orimo,et al.  Materials science of Mg-Ni-based new hydrides , 2001 .

[182]  Michael J. Heben,et al.  Hydrogen storage using carbon adsorbents: past, present and future , 2001 .

[183]  C. Bauschlicher,et al.  High Coverages of Hydrogen on a (10,0) Carbon Nanotube , 2001 .

[184]  B. Mcenaney,et al.  Molecular Simulations of Hydrogen Storage in Carbon Nanotube Arrays , 2000 .

[185]  G. Sandrock,et al.  Dynamic in-situ X-ray Diffraction of Catalyzed Alanates , 2000 .

[186]  Gary G. Tibbetts,et al.  Thermogravimetric Measurement of Hydrogen Absorption in Alkali-Modified Carbon Materials , 2000 .

[187]  Onkar Nath Srivastava,et al.  Synthesis and hydrogenation behaviour of graphitic nanofibres , 2000 .

[188]  D. Lévesque,et al.  High Adsorptive Property of Opened Carbon Nanotubes at 77 K , 2000 .

[189]  R. Schulz,et al.  Hydrogen desorption kinetics of a mechanically milled MgH2+5at.%V nanocomposite , 2000 .

[190]  Thomas Frauenheim,et al.  Hydrogen adsorption and storage in carbon nanotubes , 2000 .

[191]  Young Hee Lee,et al.  Hydrogen storage in single-walled carbon nanotubes , 2000 .

[192]  R. Brand,et al.  Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials , 2000 .

[193]  Peter C. Eklund,et al.  Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes , 2000 .

[194]  Hui‐Ming Cheng,et al.  Synthesis and Hydrogen Storage of Carbon Nanofibers and Single-walled Carbon Nanotubes , 2000, International Journal of Materials Research.

[195]  A. Załuska,et al.  Sodium alanates for reversible hydrogen storage , 2000 .

[196]  Yumiko Nakamura,et al.  Synthesis of magnesium and titanium hydride via reactive mechanical alloying: Influence of 3d-metal addition on MgH2 synthesize , 2000 .

[197]  T. Tamura,et al.  New V-based alloys with high protium absorption and desorption capacity , 1999 .

[198]  R. Schulz,et al.  Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride , 1999 .

[199]  G. Sandrock A panoramic overview of hydrogen storage alloys from a gas reaction point of view , 1999 .

[200]  J. Garche,et al.  Hydrogen adsorption on carbon materials , 1999 .

[201]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[202]  Robert Schulz,et al.  Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni) systems , 1999 .

[203]  A. Chambers,et al.  Further Studies of the Interaction of Hydrogen with Graphite Nanofibers , 1999 .

[204]  A. Züttel,et al.  Hydrogen in the mechanically prepared nanostructured graphite , 1999 .

[205]  Cheng,et al.  Hydrogen storage in single-walled carbon nanotubes at room temperature , 1999, Science.

[206]  Robert Schulz,et al.  Hydrogen storage properties of the mechanically milled MgH2–V nanocomposite , 1999 .

[207]  D. Antonelli Synthesis of phosphorus-free mesoporous titania via templating with amine surfactants , 1999 .

[208]  R. Schulz,et al.  Recent developments in the applications of nanocrystalline materials to hydrogen technologies , 1999 .

[209]  A. Załuska,et al.  Synergy of hydrogen sorption in ball-milled hydrides of Mg and Mg2Ni , 1999 .

[210]  Chen,et al.  High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures , 1999, Science.

[211]  T. Groy,et al.  Design and synthesis of metal-carboxylate frameworks with permanent microporosity , 1999 .

[212]  Craig M. Jensen,et al.  Hydrogen cycling behavior of zirconium and titanium–zirconium-doped sodium aluminum hydride , 1999 .

[213]  A. Załuska,et al.  Nanocrystalline magnesium for hydrogen storage , 1999 .

[214]  J. Karl Johnson,et al.  Optimization of Carbon Nanotube Arrays for Hydrogen Adsorption , 1999 .

[215]  Craig M. Jensen,et al.  Advanced titanium doping of sodium aluminum hydride:: segue to a practical hydrogen storage material? , 1999 .

[216]  Kenneth A. Smith,et al.  Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes , 1999 .

[217]  T. Klassen,et al.  Thermodynamic analysis of the hydriding process of Mg-Ni alloys , 1999 .

[218]  Peter Lamp,et al.  Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes , 1998 .

[219]  Robert C. Bowman,et al.  Hydrogen desorption and adsorption measurements on graphite nanofibers , 1998 .

[220]  E. Akiba,et al.  Direct synthesis of Mg2FeH6 by mechanical alloying , 1998 .

[221]  V. Kazansky,et al.  Low temperature hydrogen adsorption on sodium forms of faujasites: barometric measurements and drift spectra , 1998 .

[222]  A. Chambers,et al.  Hydrogen Storage in Graphite Nanofibers , 1998 .

[223]  A. Cheetham,et al.  A neutron diffraction and infrared spectroscopy study of the acid form of the aluminosilicate zeolite, chabazite (H- SSZ-13) , 1997 .

[224]  B. Bogdanovic,et al.  Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials , 1997 .

[225]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[226]  S. Ernst,et al.  Zeolites as media for hydrogen storage , 1995 .

[227]  Alan Chambers,et al.  Catalytic Engineering of Carbon Nanostructures , 1995 .

[228]  Richard Chahine,et al.  Low-pressure adsorption storage of hydrogen , 1994 .

[229]  B. Stansfield,et al.  On the control of carbon nanostructures for hydrogen storage applications , 2004 .

[230]  M. Izquierdo,et al.  Hydrogen adsorption studies on single wall carbon nanotubes , 2004 .

[231]  Wenbin Lin,et al.  Highly interpenetrated metal-organic frameworks for hydrogen storage. , 2004, Angewandte Chemie.

[232]  Quan-hong Yang,et al.  Hydrogen adsorption/desorption behavior of multi-walled carbon nanotubes with different diameters , 2003 .

[233]  Michael A. Wilson,et al.  Recent advances in the preparation and utilization of carbon nanotubes for hydrogen storage. , 2001, Journal of nanoscience and nanotechnology.

[234]  R. T. Yang,et al.  Hydrogen storage by alkali-doped carbon nanotubes–revisited , 2000 .

[235]  J. Bobet,et al.  Preparation of Mg2Co alloy by mechanical alloying. Effects of the synthesis conditions on the hydrogenation characteristics , 1999 .

[236]  J. Johnson,et al.  Computer Simulations of Hydrogen Adsorption on Graphite Nanofibers , 1999 .

[237]  Hui-Ming Cheng,et al.  Hydrogen uptake in vapor-grown carbon nanofibers , 1999 .

[238]  J. Johnson,et al.  MOLECULAR SIMULATION OF HYDROGEN ADSORPTION IN SINGLE-WALLED CARBON NANOTUBES AND IDEALIZED CARBON SLIT PORES , 1999 .

[239]  Riichiro Saito,et al.  Physics of carbon nanotubes , 1995 .

[240]  H. Brown,et al.  Reactions of Diborane with Alkali Metal Hydrides and Their Addition Compounds. New Syntheses of Borohydrides. Sodium and Potassium Borohydrides1 , 1953 .

[241]  Hermann I. Schlesinger,et al.  Metallo Borohydrides. III. Lithium Borohydride , 1940 .