Aggregate dynamics for dense crowd simulation

Large dense crowds show aggregate behavior with reduced individual freedom of movement. We present a novel, scalable approach for simulating such crowds, using a dual representation both as discrete agents and as a single continuous system. In the continuous setting, we introduce a novel variational constraint called unilateral incompressibility, to model the large-scale behavior of the crowd, and accelerate inter-agent collision avoidance in dense scenarios. This approach makes it possible to simulate very large, dense crowds composed of up to a hundred thousand agents at near-interactive rates on desktop computers.

[1]  Ming C. Lin,et al.  Motion planning and autonomy for virtual humans , 2008, SIGGRAPH '08.

[2]  Dinesh Manocha,et al.  ClearPath: highly parallel collision avoidance for multi-agent simulation , 2009, SCA '09.

[3]  R. Hughes The flow of human crowds , 2003 .

[4]  Dinesh Manocha,et al.  Reciprocal n-Body Collision Avoidance , 2011, ISRR.

[5]  Robert Bridson,et al.  Animating sand as a fluid , 2005, ACM Trans. Graph..

[6]  Diana F. Spears,et al.  Robotic simulation of gases for a surveillance task , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  Céline Loscos,et al.  Intuitive crowd behavior in dense urban environments using local laws , 2003, Proceedings of Theory and Practice of Computer Graphics, 2003..

[8]  Eftychios Sifakis,et al.  To appear in the ACM SIGGRAPH conference proceedings Detail Preserving Continuum Simulation of Straight Hair , 2009 .

[9]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[10]  Mark H. Overmars,et al.  Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2004) , 2022 .

[11]  Paolo Fiorini,et al.  Motion Planning in Dynamic Environments Using Velocity Obstacles , 1998, Int. J. Robotics Res..

[12]  Demetri Terzopoulos,et al.  Autonomous pedestrians , 2005, SCA '05.

[13]  Francis H Harlow,et al.  The particle-in-cell method for numerical solution of problems in fluid dynamics , 1962 .

[14]  Dinesh Manocha,et al.  Multi-robot coordination using generalized social potential fields , 2009, 2009 IEEE International Conference on Robotics and Automation.

[15]  Stéphane Donikian,et al.  Crowd of Virtual Humans: a New Approach for Real Time Navigation in Complex and Structured Environments , 2004, Comput. Graph. Forum.

[16]  Rahul Narain,et al.  Aggregate dynamics for dense crowd simulation , 2009, SIGGRAPH 2009.

[17]  Michael Gleicher,et al.  Scalable behaviors for crowd simulation , 2004, Comput. Graph. Forum.

[18]  Helbing,et al.  Social force model for pedestrian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Stephen Chenney,et al.  Flow tiles , 2004, SCA '04.

[20]  Sébastien Paris,et al.  Pedestrian Reactive Navigation for Crowd Simulation: a Predictive Approach , 2007, Comput. Graph. Forum.

[21]  Joëlle Thollot,et al.  A physically-based particle model of emergent crowd behaviors , 2010, ArXiv.

[22]  Lubos Buzna,et al.  Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions , 2005, Transp. Sci..

[23]  Masahiro Shimizu,et al.  Coherent swarming from local interaction by exploiting molecular dynamics and stokesian dynamics methods , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[24]  Dinesh Manocha,et al.  Interactive Modeling, Simulation and Control of Large-Scale Crowds and Traffic , 2009, MIG.

[25]  Daniel Thalmann,et al.  Populating virtual environments with crowds , 2006, VRCIA '06.

[26]  D. Thalmann,et al.  A navigation graph for real-time crowd animation on multilayered and uneven terrain , 2005 .

[27]  Robert Bridson,et al.  Fluid Simulation , 2008 .

[28]  Norman I. Badler,et al.  Virtual Crowds: Methods, Simulation, and Control , 2008, Virtual Crowds: Methods, Simulation, and Control.

[29]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[30]  Jessica K. Hodgins,et al.  Reactive pedestrian path following from examples , 2004, The Visual Computer.

[31]  Dinesh Manocha,et al.  Reciprocal Velocity Obstacles for real-time multi-agent navigation , 2008, 2008 IEEE International Conference on Robotics and Automation.

[32]  Taras I. Lakoba,et al.  Modifications of the Helbing-Molnár-Farkas-Vicsek Social Force Model for Pedestrian Evolution , 2005, Simul..

[33]  Nancy M. Amato,et al.  Better Group Behaviors in Complex Environments using Global Roadmaps , 2002 .

[34]  N. Badler,et al.  Crowd simulation incorporating agent psychological models, roles and communication , 2005 .

[35]  Takashi Chikayama,et al.  Simulating the Collision Avoidance Behavior of Pedestrians , 2000 .

[36]  Dinesh Manocha,et al.  Composite agents , 2008, SCA '08.

[37]  John Funge,et al.  Cognitive modeling: knowledge, reasoning and planning for intelligent characters , 1999, SIGGRAPH.

[38]  Joachim Schöberl,et al.  Minimizing Quadratic Functions Subject to Bound Constraints with the Rate of Convergence and Finite Termination , 2005, Comput. Optim. Appl..

[39]  Vijay Kumar,et al.  Control of swarms based on Hydrodynamic models , 2008, 2008 IEEE International Conference on Robotics and Automation.

[40]  Craig W. Reynolds Steering Behaviors For Autonomous Characters , 1999 .

[41]  Dinesh Manocha,et al.  Real-time navigation of independent agents using adaptive roadmaps , 2008, SIGGRAPH '08.

[42]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, ACM Trans. Graph..

[43]  Soraia Raupp Musse,et al.  A Model of Human Crowd Behavior : Group Inter-Relationship and Collision Detection Analysis , 1997, Computer Animation and Simulation.

[44]  Adrien Treuille,et al.  Continuum crowds , 2006, SIGGRAPH 2006.