Technique for diagnosing the flapping motion of magnetotail current sheets based on single‐point magnetic field analysis

The magnetotail current sheet is active and often flaps back and forth. Knowledge about the flapping motion of current sheet is essential to explore the related magnetotail dynamic processes, e.g., plasma instabilities. Due to the inability of single‐point measurements to separate the spatial‐temporal variation of magnetic field, the moving velocity of flapping current sheets cannot be revealed generally until the multipoint measurements are available, e.g., the Cluster mission. Therefore, currently, the flapping behaviors are hard to be resolved only relying on single‐point magnetic field analysis. In this study, with minimum variance analysis, we develop a technique based on single‐point magnetic field measurement to qualitatively diagnose the flapping properties including the flapping type and the traveling direction of kink‐like flapping. The comparison with Cluster multipoint analysis via several case studies demonstrates that this technique is applicable; it should, however, be used with caution especially when the local sheet surface is either quasi‐horizontal, or quasi‐vertical. This technique will be useful for the planetary magnetotail exploration where no multipoint observations are available.

[1]  M. Dunlop,et al.  Radial distribution of magnetic field in earth magnetotail current sheet , 2014 .

[2]  M. Freeman,et al.  Large-Scale Structure and Dynamics of the Magnetotails of Mercury, Earth, Jupiter and Saturn , 2014, Space Science Reviews.

[3]  R. Nakamura,et al.  Comparative magnetotail flapping: an overview of selected events at Earth, Jupiter and Saturn , 2013 .

[4]  J. Wei,et al.  Bursty escape fluxes in plasma sheets of Mars and Venus , 2012 .

[5]  F. Duru,et al.  The Induced Magnetospheres of Mars, Venus, and Titan , 2011 .

[6]  M. Dunlop,et al.  Statistical survey on the magnetic structure in magnetotail current sheets , 2011 .

[7]  W. Wan,et al.  The analytic properties of the flapping current sheets in the earth magnetotail , 2010 .

[8]  M. Lester,et al.  Solar wind and substorm excitation of the wavy current sheet , 2009 .

[9]  R. Nakamura,et al.  Low frequency eigenmodes of thin anisotropic current sheets and Cluster observations , 2009 .

[10]  M. Dunlop,et al.  Magnetic configurations of the tilted current sheets in magnetotail , 2008 .

[11]  A. Sharma,et al.  Transient and localized processes in the magnetotail: a review , 2008 .

[12]  A. Runov,et al.  Asymmetric thin current sheets in the Earth's magnetotail , 2007 .

[13]  H. Biernat,et al.  Magnetic double-gradient instability and flapping waves in a current sheet. , 2007, Physical review letters.

[14]  Wolfgang Baumjohann,et al.  Survey of large-amplitude flapping motions in the midtail current sheet , 2006, Annales Geophysicae.

[15]  Parvez N. Guzdar,et al.  Structure and dynamics of a new class of thin current sheets , 2006 .

[16]  Wolfgang Baumjohann,et al.  Oscillatory magnetic flux tube slippage in the plasma sheet , 2006 .

[17]  M. Volwerk Multi-satellite observations of ULF waves , 2006 .

[18]  Wolfgang Baumjohann,et al.  Oscillations of flux tube slippage in the quiet plasma sheet , 2006 .

[19]  Wolfgang Baumjohann,et al.  Double Star/Cluster observation of neutral sheet oscillations on 5 August 2004 , 2005 .

[20]  Wolfgang Baumjohann,et al.  Electric current and magnetic field geometry in flapping magnetotail current sheets , 2005 .

[21]  I. Golovchanskaya,et al.  On the identification of plasma sheet flapping waves observed by Cluster , 2005 .

[22]  R. Kallenbach,et al.  Solar System Magnetospheres , 2005 .

[23]  K. Glassmeier,et al.  Neutral sheet normal direction determination , 2005 .

[24]  Wolfgang Baumjohann,et al.  Orientation and propagation of current sheet oscillations , 2004 .

[25]  N. Tsyganenko,et al.  Global shape of the magnetotail current sheet as derived from Geotail and Polar data , 2004 .

[26]  H. Karimabadi,et al.  Ion-ion kink instability in the magnetotail: 2. Three-dimensional full particle and hybrid simulations and comparison with observations , 2003 .

[27]  H. Karimabadi,et al.  Ion‐ion kink instability in the magnetotail: 1. Linear theory , 2003 .

[28]  K. Glassmeier,et al.  Kink mode oscillation of the current sheet , 2003 .

[29]  Wolfgang Baumjohann,et al.  Current sheet flapping motion and structure observed by Cluster , 2003 .

[30]  K. Glassmeier,et al.  A wavy twisted neutral sheet observed by CLUSTER , 2002 .

[31]  Nasa Gsfc,et al.  The Cluster mission , 2001 .

[32]  M. Fehringer,et al.  Introduction The Cluster mission , 2001 .

[33]  M. W. Dunlop,et al.  The Cluster Magnetic Field Investigation: overview of in-flight performance and initial results , 2001 .

[34]  V. Angelopoulos,et al.  Current sheet measurements within a flapping plasma sheet , 1998 .

[35]  B. Sonnerup,et al.  Minimum and Maximum Variance Analysis , 1998 .

[36]  Christopher C. Harvey,et al.  Spatial Gradients and the Volumetric Tensor , 1998 .

[37]  A. Lui,et al.  Modified magnetohydrodynamic waves in a current sheet in space , 1997 .

[38]  E. W. Hones,et al.  Multiple crossings of a very thin plasma sheet in the Earth's magnetotail , 1981 .

[39]  C. Meng,et al.  Wavy nature of the magnetotail neutral sheet , 1978 .

[40]  T. Tsutomu,et al.  Flapping motions of the tail plasma sheet induced by the interplanetary magnetic field variations , 1976 .

[41]  T. Speiser Magnetospheric current sheets , 1973 .

[42]  T. Speiser,et al.  The neutral sheet in the geomagnetic tail - Its motion, equivalent currents, and field line connection through it. , 1967 .