Nuclear Data Uncertainties for Typical LWR Fuel Assemblies and a Simple Reactor Core

Abstract The impact of the current nuclear data library covariances such as in ENDF/B-VII.1, JEFF-3.2, JENDL-4.0, SCALE and TENDL, for relevant current reactors is presented in this work. The uncertainties due to nuclear data are calculated for existing PWR and BWR fuel assemblies (with burn-up up to 40 GWd/tHM, followed by 10 years of cooling time) and for a simplified PWR full core model (without burn-up) for quantities such as k ∞ , macroscopic cross sections, pin power or isotope inventory. In this work, the method of propagation of uncertainties is based on random sampling of nuclear data, either from covariance files or directly from basic parameters. Additionally, possible biases on calculated quantities are investigated such as the self-shielding treatment. Different calculation schemes are used, based on CASMO, SCALE, DRAGON, MCNP or FISPACT-II, thus simulating real-life assignments for technical-support organizations. The outcome of such a study is a comparison of uncertainties with two consequences. One: although this study is not expected to lead to similar results between the involved calculation schemes, it provides an insight on what can happen when calculating uncertainties and allows to give some perspectives on the range of validity on these uncertainties. Two: it allows to dress a picture of the state of the knowledge as of today, using existing nuclear data library covariances and current methods.

[1]  Axel Hoefer,et al.  Comparison of nuclear data uncertainty propagation methodologies for PWR burn-up simulations , 2014, 1411.0834.

[2]  William R. Martin,et al.  THE MONTE CARLO PERFORMANCE BENCHMARK TEST - AIMS, SPECIFICATIONS AND FIRST RESULTS , 2011 .

[3]  N. M. Larson,et al.  Updated Users' Guide for SAMMY Multilevel R-matrix Fits to Neutron Data Using Bayes' Equation , 1998 .

[4]  D. Rochman,et al.  NUCLEAR DATA UNCERTAINTY PROPAGATION FOR A TYPICAL PWR FUEL ASSEMBLY WITH BURNUP , 2014 .

[5]  T. Takeda,et al.  Importance of self-shielding for improving sensitivity coefficients in light water nuclear reactors , 2014 .

[6]  A. J. Koning,et al.  Propagation of 235,236,238U and 239Pu Nuclear Data Uncertainties for a Typical PWR Fuel Element , 2012 .

[7]  M. W. Herman,et al.  EMPIRE: Nuclear Reaction Model Code System for Data Evaluation , 2007 .

[8]  G. Noguere,et al.  Status of CONRAD, a nuclear reaction analysis tool , 2007 .

[9]  G. Van den Eynde,et al.  Generation of fission yield covariances to correct discrepancies in the nuclear data libraries , 2016 .

[10]  Arjan J. Koning,et al.  From average parameters to statistical resolved resonances , 2013 .

[11]  Olivier Litaize,et al.  Fission modelling with FIFRELIN , 2015 .

[12]  N. M. Larson,et al.  ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data , 2011 .

[13]  T. Ueki Batch estimation of statistical errors in the Monte Carlo calculation of local powers , 2011 .

[14]  William A. Wieselquist,et al.  Vera core simulator methodology for PWR cycle depletion , 2015 .

[15]  Arjan J. Koning,et al.  Modern Nuclear Data Evaluation with the TALYS Code System , 2012 .

[16]  Brendan Kochunas,et al.  Analysis of the Core Power Response during a PWR Rod Ejection Transient Using the PARCS Nodal Code and the DeCART MOC Code , 2012 .

[17]  K. Shibata,et al.  JENDL-4.0: A New Library for Nuclear Science and Engineering , 2011 .

[18]  G. I. Maldonado,et al.  Uncertainty Underprediction in Monte Carlo Eigenvalue Calculations , 2013 .

[19]  K.-H. Schmidt,et al.  General Description of Fission Observables: GEF Model Code , 2016 .

[20]  Kiril Velkov,et al.  Aleatoric and epistemic uncertainties in sampling based nuclear data uncertainty and sensitivity analyses , 2012 .

[21]  William R. Martin,et al.  CHALLENGES AND PROSPECTS FOR WHOLE-CORE MONTE CARLO ANALYSIS , 2012 .

[22]  Mathieu Hursin,et al.  Impact of improved neutronic methodology on the cladding response during a PWR reactivity initiated accident , 2013 .

[23]  B. Pritychenko,et al.  Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR): International Collaboration Between Nuclear Reaction Data Centres (NRDC) , 2014, 2002.07114.

[24]  R. Manzel,et al.  EPMA and SEM of fuel samples from PWR rods with an average burn-up of around 100 MWd/kgHM , 2002 .

[25]  G. Van den Eynde,et al.  Fission yield covariance generation and uncertainty propagation through fission pulse decay heat calculation , 2014 .

[26]  O. Leray,et al.  Nuclear data uncertainty propagation on spent fuel nuclide compositions , 2016 .

[27]  Martin A. Zimmermann,et al.  Statistical Uncertainty Analysis Applied to Fuel Depletion Calculations , 2007 .

[28]  Manuel Bossant,et al.  JANIS 4: An Improved Version of the NEA Java-based Nuclear Data Information System , 2014 .

[29]  Ely M. Gelbard,et al.  Computation of standard deviations in Eigenvalue calculations , 1990 .

[30]  Massimo Salvatores,et al.  EQUIVALENT GENERALIZED PERTURBATION THEORY (EGPT) , 1986 .

[31]  Kostadin Ivanov,et al.  BENCHMARK FOR UNCERTAINTY ANALYSIS IN MODELING (UAM) FOR DESIGN, OPERATION AND SAFETY ANALYSIS OF LWRs , 2007 .

[32]  Arjan J. Koning,et al.  Nuclear data uncertainty propagation: Perturbation vs. Monte Carlo , 2011 .

[33]  William A. Wieselquist,et al.  PSI Methodologies for Nuclear Data Uncertainty Propagation with CASMO-5M and MCNPX: Results for OECD/NEA UAM Benchmark Phase I , 2013 .

[34]  S. V. D. Marck,et al.  ORANGE: a Monte Carlo dose engine for radiotherapy , 2005, Physics in medicine and biology.

[35]  Robert E. MacFarlane,et al.  Methods for Processing ENDF/B-VII with NJOY , 2010 .

[36]  Alexander Vasiliev,et al.  NUSS: A tool for propagating multigroup nuclear data covariances in pointwise ACE-formatted nuclear data using stochastic sampling method , 2015 .

[37]  Harold E. Adkins,et al.  Predictive Bias and Sensitivity in NRC Fuel Performance Codes , 2009 .

[38]  Morten Moshagen,et al.  Generating Correlated, Non-normally Distributed Data Using a Non-linear Structural Model , 2015, Psychometrika.

[39]  Go Chiba,et al.  Uncertainty quantification of neutronic parameters of light water reactor fuel cells with JENDL-4.0 covariance data , 2013 .

[40]  D. F. Da Cruz,et al.  Uncertainty Analysis on Reactivity and Discharged Inventory due to 235,238U, 239,240,241Pu, and Fission Products: Application to a Pressurized Water Reactor Fuel Assembly , 2014 .

[41]  Arjan J. Koning,et al.  How to Randomly Evaluate Nuclear Data: A New Data Adjustment Method Applied to 239Pu , 2011 .

[42]  Thomas E. Booth,et al.  Confidence Interval Procedures for Monte Carlo Transport Simulations , 1995 .

[43]  Petter Helgesson,et al.  Experiments and Theoretical Data for Studying the Impact of Fission Yield Uncertainties on the Nuclear Fuel Cycle with TALYS/GEF and the Total Monte Carlo Method , 2015 .

[44]  O. Leray,et al.  A Bayesian Monte Carlo method for fission yield covariance information , 2016 .

[45]  Chang Hyo Kim,et al.  Real Variance Estimation Using an Intercycle Fission Source Correlation for Monte Carlo Eigenvalue Calculations , 2009 .

[46]  Van Der Marck,et al.  Benchmarking ENDF/B-VII.1, JENDL-4.0 and JEFF-3.1 , 2012 .

[47]  Ian C Gauld,et al.  Investigation of Inconsistent ENDF/B-VII.1 Independent and Cumulative Fission Product Yields with Proposed Revisions , 2015 .

[48]  Arjan J. Koning,et al.  Nuclear data uncertainty for criticality-safety: Monte Carlo vs. linear perturbation , 2016 .

[49]  Kord Smith,et al.  CASMO-5 Development and Applications , 2006 .

[50]  Petter Helgesson,et al.  Efficient Use of Monte Carlo: Uncertainty Propagation , 2014 .

[51]  Tomasz Kozlowski,et al.  Sensitivity Studies for the Exercise I-1 of the OECD/UAM Benchmark , 2012 .

[52]  John S. Hendricks,et al.  Initial MCNP6 Release Overview , 2012 .

[53]  Olivier Serot,et al.  Covariance Matrix Evaluations for Independent Mass Fission Yields , 2015 .

[54]  A. Pautz,et al.  Verification of the new implementations in SHARKX against TSUNAMI to perform pinpower UQ and representativity analysis , 2015 .

[55]  Kiril Velkov,et al.  Status of XSUSA for Sampling Based Nuclear Data Uncertainty and Sensitivity Analysis , 2013 .

[56]  Tomohiro Endo,et al.  Uncertainty estimation of core safety parameters using cross-correlations of covariance matrix , 2013 .

[57]  Mathieu Hursin,et al.  Benchmarking and application of the state-of-the-art uncertainty analysis methods XSUSA and SHARK-X , 2017 .

[58]  Ryan N. Bratton,et al.  OECD/NEA BENCHMARK FOR UNCERTAINTY ANALYSIS IN MODELING (UAM) FOR LWRS - SUMMARY AND DISCUSSION OF NEUTRONICS CASES (PHASE I) , 2014 .

[59]  B. E. Boyack,et al.  Quantifying reactor safety margins part 3: Assessment and ranging of parameters , 1990 .

[60]  Bradley T Rearden,et al.  Methods and issues for the combined use of integral experiments and covariance data: Results of a NEA international collaborative study , 2014 .

[61]  M. Herman,et al.  ENDF-6 Formats Manual Data Formats and Procedures for the Evaluated Nuclear Data File ENDF/B-VI and ENDF/B-VII Written by the Members of the Cross Sections Evaluation Working Group Last Revision Edited by , 2009 .

[62]  William A. Wieselquist,et al.  A TREND ANALYSIS METHODOLOGY FOR ENHANCED VALIDATION OF 3-D LWR CORE SIMULATIONS , 2011 .

[63]  Petter Helgesson,et al.  UO2 versus MOX: Propagated Nuclear Data Uncertainty for keff, with Burnup , 2014 .

[64]  R. Schibli,et al.  Cyclotron production of (44)Sc: From bench to bedside. , 2015, Nuclear medicine and biology.

[65]  J.-Ch. Sublet,et al.  Inventory Uncertainty Quantification using TENDL Covariance Data in Fispact-II , 2015 .

[66]  Arjan J. Koning,et al.  Evaluation and Adjustment of the Neutron-Induced Reactions of 63,65Cu , 2012 .

[67]  Arjan J. Koning Bayesian Monte Carlo method for nuclear data evaluation , 2015 .

[68]  W. Hix,et al.  Sensitivity studies for the weak r process: neutron capture rates , 2014 .

[69]  A Probability Table Based Cross Section Processing System: CALENDF - 2001 , 2002 .

[70]  Philip R. Page,et al.  ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology , 2006 .

[71]  Bradley T Rearden,et al.  A Statistical Sampling Method for Uncertainty Analysis with SCALE and XSUSA , 2013 .

[72]  A. J. Koning,et al.  Random Adjustment of the H in H2O Neutron Thermal Scattering Data , 2012 .

[73]  O. Cabellos,et al.  Inventory calculation and nuclear data uncertainty propagation on light water reactor fuel using ALEPH-2 and SCALE 6.2 , 2015 .

[74]  O. Cabellos,et al.  PROPAGATION OF NUCLEAR DATA UNCERTAINTIES FOR PWR CORE ANALYSIS , 2014 .

[75]  B. Everitt The Cambridge Dictionary of Statistics , 1998 .

[76]  Bradley T Rearden,et al.  TSUNAMI Primer: A Primer for Sensitivity/Uncertainty Calculations with SCALE , 2009 .

[77]  C. Dyer,et al.  Neutron-Induced Single Event Effects Testing Across a Wide Range of Energies and Facilities and Implications for Standards , 2006, IEEE Transactions on Nuclear Science.

[78]  Dorothea Wiarda,et al.  Low-fidelity Covariance Project , 2008 .

[79]  Philip F. Rose,et al.  ENDF-6 Formats Manual , 1997 .

[80]  Arjan J. Koning,et al.  Towards sustainable nuclear energy: Putting nuclear physics to work , 2008 .

[81]  William R. Martin,et al.  A proposal for a benchmark to monitor the performance of detailed Monte Carlo calculation of power densities in a full size reactor core , 2009 .