Model Order Estimation for A Sum of Complex Exponentials

In this paper, we present a new method for estimating the number of terms in a sum of exponentially damped sinusoids embedded in noise. In particular, we propose to combine the shift-invariance property of the Hankel matrix associated with the signal with a constraint over its singular values to penalize small order estimations. With this new methodology, the algebraic and statistical structures of the Hankel matrix are considered. The new order estimation technique shows significant improvements over subspace-based methods. In particular, when a good separation between the noise and the signal subspaces is not possible, the new methodology outperforms known techniques. We evaluate the performance of our method using numerical experiments and comparing its performance with previous results found in the literature.

[1]  Heng Qiao,et al.  Estimating the Number of Sinusoids in Additive Sub-Gaussian Noise With Finite Measurements , 2020, IEEE Signal Processing Letters.

[2]  Jeffrey M. Hokanson,et al.  A Data-Driven McMillan Degree Lower Bound , 2018, SIAM J. Sci. Comput..

[3]  Andrea Giorgetti,et al.  Model Order Selection Based on Information Theoretic Criteria: Design of the Penalty , 2015, IEEE Transactions on Signal Processing.

[4]  Jean-Yves Tourneret,et al.  A New Frequency Estimation Method for Equally and Unequally Spaced Data , 2014, IEEE Transactions on Signal Processing.

[5]  Raymundo Albert,et al.  Model Order Selection For Sum of Complex Exponentials , 2021, 2021 IEEE URUCON.

[6]  Y. Selen,et al.  Model-order selection: a review of information criterion rules , 2004, IEEE Signal Processing Magazine.

[7]  Boaz Nadler,et al.  Non-Parametric Detection of the Number of Signals: Hypothesis Testing and Random Matrix Theory , 2009, IEEE Transactions on Signal Processing.

[8]  Roland Badeau,et al.  Selecting the modeling order for the ESPRIT high resolution method: an alternative approach , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[9]  K. J. Ray Liu,et al.  A structured low-rank matrix pencil for spectral estimation and system identification , 1998, Signal Process..

[10]  Roland Badeau,et al.  A new perturbation analysis for signal enumeration in rotational invariance techniques , 2006, IEEE Transactions on Signal Processing.

[11]  Charles R. Johnson,et al.  Matrix Analysis, 2nd Ed , 2012 .

[12]  David L. Donoho,et al.  Optimal Shrinkage of Singular Values , 2014, IEEE Transactions on Information Theory.

[13]  J. Laroche The use of the matrix pencil method for the spectrum analysis of musical signals , 1993 .

[14]  Anders Rantzer,et al.  Low-Rank Optimization With Convex Constraints , 2016, IEEE Transactions on Automatic Control.

[15]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[16]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[17]  Tapan K. Sarkar,et al.  Application of the matrix pencil method for estimating the SEM (singularity expansion method) poles of source-free transient responses from multiple look directions , 2000 .

[18]  A. Dembo,et al.  Spectral measure of large random Hankel, Markov and Toeplitz matrices , 2003, math/0307330.

[19]  D. Donoho,et al.  The Optimal Hard Threshold for Singular Values is 4 / √ 3 , 2013 .

[20]  Andreas Jakobsson,et al.  An esprit-based parameter estimator for spectroscopic data , 2012, 2012 IEEE Statistical Signal Processing Workshop (SSP).

[21]  Joel A. Tropp,et al.  An Introduction to Matrix Concentration Inequalities , 2015, Found. Trends Mach. Learn..

[22]  Sabine Van Huffel,et al.  A Shift Invariance-Based Order-Selection Technique for Exponential Data Modelling , 2007, IEEE Signal Processing Letters.

[23]  N. Higham MATRIX NEARNESS PROBLEMS AND APPLICATIONS , 1989 .