Continuity of the Mass Loss of the World's Glaciers and Ice Caps From the GRACE and GRACE Follow‐On Missions

We use time series of time‐variable gravity from the Gravitational Recovery and Climate Experiment (GRACE) and GRACE Follow‐On (GRACE‐FO) missions to evaluate the mass balance of the world's glaciers and ice caps (GIC) for the time period April 2002 to September 2019, excluding Antarctica and Greenland peripheral glaciers. We demonstrate continuity of the mass balance record across the GRACE/GRACE‐FO data gap using independent data from the GMAO Modern‐Era Retrospective Analysis for Research and Applications, Version 2 (MERRA‐2) reanalysis. We report an average mass loss of 281.5 ± 30 Gt/yr, an acceleration of 50 ± 20 Gt/yr per decade, and a 13‐mm cumulative sea level rise for the analyzed period. Seven regions dominate the mass loss, with the largest share from the Arctic: Alaska (72.5 ± 8 Gt/yr), Canadian Arctic Archipelago (73.0 ± 9 Gt/yr), Southern Andes (30.4 ± 13 Gt/yr), High Mountain Asia (HMA) (28.8 ± 11 Gt/yr), Russian Arctic (20.2 ± 6 Gt/yr), Iceland (15.9 ± 4 Gt/yr), and Svalbard (12.1 ± 4 Gt/yr). At the regional level, the analysis of acceleration is complicated by a strong interannual to decadal variability in mass balance that is well reproduced by the GRACE‐calibrated MERRA‐2 data.

[1]  Jack T. Beavers,et al.  Mass balance , 2019, Principles of Glacier Mechanics.

[2]  X. Fettweis,et al.  Unprecedented atmospheric conditions (1948–2019) drive the 2019 exceptional melting season over the Greenland ice sheet , 2019, The Cryosphere.

[3]  Tyler C. Sutterley,et al.  Improved Estimates of Geocenter Variability from Time-Variable Gravity and Ocean Model Outputs , 2019, Remote. Sens..

[4]  S. Luthcke,et al.  Improved Earth Oblateness Rate Reveals Increased Ice Sheet Losses and Mass‐Driven Sea Level Rise , 2019, Geophysical Research Letters.

[5]  Bert Wouters,et al.  Global Glacier Mass Loss During the GRACE Satellite Mission (2002-2016) , 2019, Front. Earth Sci..

[6]  Frank Flechtner,et al.  Contributions of GRACE to understanding climate change , 2019, Nature Climate Change.

[7]  Isabella Velicogna,et al.  Mass Balance of Novaya Zemlya Archipelago, Russian High Arctic, Using Time-Variable Gravity from GRACE and Altimetry Data from ICESat and CryoSat-2 , 2018, Remote. Sens..

[8]  M. Sharp,et al.  Influence of recent warming and ice dynamics on glacier surface elevations in the Canadian High Arctic, 1995–2014 , 2018, Journal of Glaciology.

[9]  D Masters,et al.  Climate-change–driven accelerated sea-level rise detected in the altimeter era , 2018, Proceedings of the National Academy of Sciences.

[10]  Rebecca Killick,et al.  Exceptional retreat of Novaya Zemlya's marine-terminating outlet glaciers between 2000 and 2013 , 2017 .

[11]  E. Berthier,et al.  A spatially resolved estimate of High Mountain Asia glacier mass balances, 2000-2016 , 2017, Nature geoscience.

[12]  William M. Putman,et al.  The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). , 2017, Journal of climate.

[13]  R. Forsberg,et al.  The effect of signal leakage and glacial isostatic rebound on GRACE-derived ice mass changes in Iceland , 2017 .

[14]  Eric Rignot,et al.  Mass budget of the glaciers and ice caps of the Queen Elizabeth Islands, Canada, from 1991 to 2015 , 2017 .

[15]  John C. Ries,et al.  The unexpected signal in GRACE estimates of $$C_{20}$$C20 , 2017 .

[16]  A. Shepherd,et al.  Surface elevation change and mass balance of Icelandic ice caps derived from swath mode CryoSat‐2 altimetry , 2016 .

[17]  Hongling Shi,et al.  Complex principal component analysis of mass balance changes on the Qinghai–Tibetan Plateau , 2016 .

[18]  Frederik J. Simons,et al.  Ice mass loss in Greenland, the Gulf of Alaska, and the Canadian Archipelago: Seasonal cycles and decadal trends , 2016 .

[19]  Matthew E. Pritchard,et al.  Recent changes in glacier velocities and thinning at Novaya Zemlya , 2016 .

[20]  J. Famiglietti,et al.  A decade of sea level rise slowed by climate-driven hydrology , 2016, Science.

[21]  J. Kusche,et al.  Revisiting the contemporary sea-level budget on global and regional scales , 2016, Proceedings of the National Academy of Sciences.

[22]  M. Rodell,et al.  65 Years of Reprocessed GLDAS Version 2.0 Data and Their Exploration Using the NASA GES DISC Giovanni , 2015 .

[23]  R. Koster,et al.  Technical Report Series on Global Modeling and Data Assimilation, Volume 43. MERRA-2; Initial Evaluation of the Climate , 2015 .

[24]  S. Rupper,et al.  Sensitivity of glacier runoff projections to baseline climate data in the Indus River basin , 2015, Front. Earth Sci..

[25]  S. O’Neel,et al.  Surface melt dominates Alaska glacier mass balance , 2015 .

[26]  Andreas Kääb,et al.  Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt , 2015 .

[27]  W. Peltier,et al.  Space geodesy constrains ice age terminal deglaciation: The global ICE‐6G_C (VM5a) model , 2015 .

[28]  X. Fettweis,et al.  Rapid dynamic activation of a marine‐based Arctic ice cap , 2014 .

[29]  Xavier Fettweis,et al.  Stable climate and surface mass balance in Svalbard over 1979–2013 despite the Arctic warming , 2014 .

[30]  Richard I. Cullather,et al.  Evaluation of the Surface Representation of the Greenland Ice Sheet in a General Circulation Model , 2014 .

[31]  T. Bolch,et al.  The Randolph Glacier inventory: a globally complete inventory of glaciers , 2014 .

[32]  Kathryn Semmens,et al.  Recent ice cap snowmelt in Russian High Arctic and anti-correlation with late summer sea ice extent , 2014 .

[33]  P. Jones,et al.  Updated high‐resolution grids of monthly climatic observations – the CRU TS3.10 Dataset , 2014 .

[34]  Koji Matsuo,et al.  Current Ice Loss in Small Glacier Systems of the Arctic Islands (Iceland, Svalbard, and the Russian High Arctic) from Satellite Gravimetry , 2013 .

[35]  Frank Flechtner,et al.  Simulating high‐frequency atmosphere‐ocean mass variability for dealiasing of satellite gravity observations: AOD1B RL05 , 2013 .

[36]  Isabella Velicogna,et al.  Time‐variable gravity observations of ice sheet mass balance: Precision and limitations of the GRACE satellite data , 2013 .

[37]  M. R. van den Broeke,et al.  A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009 , 2013, Science.

[38]  E. Berthier,et al.  Contribution of Icelandic ice caps to sea level rise: Trends and variability since the Little Ice Age , 2013 .

[39]  Bert Wouters,et al.  Irreversible mass loss of Canadian Arctic Archipelago glaciers , 2013 .

[40]  J. Wahr,et al.  Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada , 2012 .

[41]  E. Cook,et al.  Sensitivity and response of Bhutanese glaciers to atmospheric warming , 2012 .

[42]  Matthew E. Pritchard,et al.  Ice loss from the Southern Patagonian Ice Field, South America, between 2000 and 2012 , 2012 .

[43]  L. Thompson,et al.  Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings , 2012 .

[44]  Bert Wouters,et al.  Recent mass changes of glaciers in the Russian High Arctic , 2012 .

[45]  T. Bolch,et al.  The State and Fate of Himalayan Glaciers , 2012, Science.

[46]  S. Swenson,et al.  Recent contributions of glaciers and ice caps to sea level rise , 2012, Nature.

[47]  J. Gregory,et al.  Revisiting the Earth's sea‐level and energy budgets from 1961 to 2008 , 2011, Geophysical Research Letters.

[48]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[49]  Carsten Braun,et al.  Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago , 2011, Nature.

[50]  Petra Döll,et al.  Global-scale modeling of glacier mass balances for water resources assessments: Glacier mass changes between 1948 and 2006 , 2010 .

[51]  V. M. Tiwari,et al.  Dwindling groundwater resources in northern India, from satellite gravity observations , 2009 .

[52]  J. Famiglietti,et al.  Satellite-based estimates of groundwater depletion in India , 2009, Nature.

[53]  J. Graham Cogley,et al.  Geodetic and direct mass-balance measurements: comparison and joint analysis , 2009 .

[54]  S. P. Anderson,et al.  Glaciers Dominate Eustatic Sea-Level Rise in the 21st Century , 2007, Science.

[55]  H. Björnsson,et al.  Response of Hofsjkull and southern Vatnajkull, Iceland, to climate change , 2006 .

[56]  T. Hassard,et al.  Applied Linear Regression , 2005 .

[57]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[58]  T. Ohta,et al.  Precipitation and atmospheric circulation patterns at mid‐latitudes of Asia , 2001 .

[59]  J. Oerlemans,et al.  Contribution of glacier melt to sea-level rise since AD 1865: a regionally differentiated calculation , 1997 .

[60]  P. Holmlund,et al.  The Mass Balance of Circum-Arctic Glaciers and Recent Climate Change , 1997, Quaternary Research.

[61]  J. Vogel,et al.  Model Selection And Multimodel Inference , 2016 .

[62]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[63]  Zong-Liang Yang,et al.  Technical description of version 4.5 of the Community Land Model (CLM) , 2013 .

[64]  Archie Paulson,et al.  FAST TRACK PAPER: Inference of mantle viscosity from GRACE and relative sea level data , 2007 .

[65]  R. Hock,et al.  Static mass-balance sensitivity of Arctic glaciers and ice caps using a degree-day approach , 2005, Annals of Glaciology.

[66]  A. Raftery Bayesian Model Selection in Social Research , 1995 .

[67]  William D. Berry,et al.  Multiple regression in practice , 1985 .

[68]  R. Rietbroek,et al.  Key Points: @bullet Consistent Method for Estimating Mass Balances from Grace @bullet Mascon Technique @bullet Evaluate Systematic Errors Gia Correction a Mascon Approach to Assess Ice Sheet and Glacier Mass Balances and Their Uncertainties from Grace Data , 2022 .